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Annotation. This paper addresses the classical solvability of an inverse boundary value problem 
for a three-dimensional parabolic equation with an integral observation condition. The origi-
nal problem is reformulated as an auxiliary problem under appropriate assumptions, and their 
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Introduction and problem formulation 

It is well known that over the past few decades, considerable attention has been devoted to the 
study of problems involving the simultaneous determination of unknown coefficients and/or right-
hand sides in partial differential equations from additional measurements. Such problems are called 
inverse problems in the theory of equations of mathematical physics. Inverse problems arise when the 
characteristics of an object or system of interest cannot be observed directly. Typical examples include 
reconstructing the characteristics of field sources from their measured values at certain points, as well 
as recovering or interpreting an original signal from a known output response.

The practical importance of inverse problems is profound, as they arise in a wide range of disci-
plines, including seismology, biology, medicine, mineral exploration, seawater desalination, and the 
study of fluid flow in porous media, among others. Consequently, inverse problems constitute some of 
the most challenging and actively studied topics in modern mathematics. The theoretical and meth-
odological foundations for investigating inverse problems in mathematical physics were laid and de-
veloped in the seminal works of distinguished mathematicians such as Tikhonov [1], Lavrent’ev [2], 
Ivanov [3], and their followers. Owing to their significant practical relevance, inverse problems have 
continued to attract considerable research interest, leading to the publication of numerous papers in 
recent decades. In recent years, inverse and ill-posed problems associated with parabolic equations 
have attracted considerable attention from numerous researchers (see, for example, [4–10], and the 
references therein). Unlike the aforementioned studies, the present work is concerned with an in-
verse boundary value problem for a three-dimensional parabolic equation. In this paper, an integral 
overdetermination condition is imposed on the corresponding direct problem, and the existence and 
uniqueness of the solution to the resulting inverse boundary value problem are established.

Let 0>T  be a fixed time moment, and let {0 },= × ≤ ≤xyzD Q t T  where xyzQ  is the spatial domain 
determined by the inequalities for the spatial variables 0 1,< <x  0 1,< <y  and 0 1.< <z  In addition, we 
set 

__
:=TD D and consider the problem of determining the unknown functions 2,2,2,1( , , , ) ( )∈ Tu x y z t C D  

and ( ) [0, ]∈a t C T  that satisfy the following three-dimensional parabolic equation:
	 ( , , , ) ( , , , ) ( , , , ) ( , , , )= + +t xx yy zzu x y z t u x y z t u x y z t u x y z t
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	 ( ) ( , , , ) ( , , , ) ( , , , ) ,+ + ∈ Ta t u x y z t f x y y t x y z t D 	 (1)
with the initial condition

	 ( , , ,0) ( , , ), 0 1, 0 1, 0 1,ϕ= ≤ ≤ ≤ ≤ ≤ ≤u x y z x y z x y z 	 (2)
the boundary conditions

	 (0, , , ) (1, , , ) 0, 0 1, 0 1, 0 ,= = ≤ ≤ ≤ ≤ ≤ ≤xu y z t u y z t y z t T 	 (3)
	 ( ,0, , ) ( ,1, , ) 0, 0 1, 0 1, 0 ,= = ≤ ≤ ≤ ≤ ≤ ≤yu x z t u x z t x z t T 	 (4)
	 ( , ,0, ) ( , ,1, ) 0, 0 1, 0 1, 0 ,= = ≤ ≤ ≤ ≤ ≤ ≤zu x y t u x y t x y t T 	 (5)

and the overdetermination condition

	
1 1 1

0 0 0

(1,1,1, ) ( , , ) ( , , , ) ( ), 0 ,+ = ≤ ≤∫ ∫ ∫u t w x y z u x y z t dxd ydz h t t T 	 (6)

where ( , , , ), ( , , ), ( , , ),ϕf x y z t x y z w x y z  and ( )h t  are known functions.
To avoid unnecessary length, we state the following theorem without proof.
Theorem 1. Suppose that 

__
( , , ), ( , , ) ( ),ϕ ∈ xyzx y z w x y z C Q  ( , , , ) ( ),∈ Tf x y z t C D  1( ) [0, ],∈h t C T  

( ) 0,≠h t  0 ≤ ≤t T  and the compatibility condition

	
1 1 1

0 0 0

(1,1,1) ( , , ) ( , , ) (0),ϕ ϕ+ =∫ ∫ ∫w x y z x y z dxdydz h 	 (7)

hold. Then the problem of finding a classical solution of (1)–(6) is equivalent to the problem of deter-
mining the functions 2,2,2,1( , , , ) ( )∈ Tu x y z t C D  and ( ) [0, ],∈a t C T  satisfying (1)–(5), and the condi-
tion

	 ( ) (1,1,1, ) (1,1,1, ) (1,1,1, )′′ = + +xx yy zzh t u t u t u t

	
1 1 1

0 0 0

( , , )( ( , , , ) ( , , , ) ( , , , ))+ + +∫ ∫ ∫ xx yy zzw x y z u x y z t u x y z t u x y z t dxdydz

	
1 1 1

0 0 0

( ) ( ) (1,1,1, ) ( , , ) ( , , , ) , 0 .+ + + ≤ ≤∫ ∫ ∫a t h t f t w x y z f x y z t dxdydz t T 	 (8)

Classical solvability of the inverse boundary value problem

We impose the following restrictions on the data of problem (1)–(5), (8):
R1) 

__
2( , , ) ( ), ( , , ), ( , , ), ( , , ), ( , , ) ( , , ),ϕ ϕ ϕ ϕ ϕ ϕ∈ xxy xyy xxx yyy xyzxyzx y z C Q x y z x y z x y z x y z x y z

       2( , , ), ( , , ), ( , , ), ( , , ), ( , , ) (ϕ ϕ ϕ ϕ ϕ ∈xxz xzz yzz yyz zzy xyzx y z x y z x y z x y z x y z L Q ),

       (0, , ) (1, , ) (0, , ) 0, 0 1, 0 1,ϕ ϕ ϕ= = = ≤ ≤ ≤ ≤x xxy z y z y z y z
       ( ,0, ) ( ,1, ) ( ,0, ) 0, 0 1, 0 1,ϕ ϕ ϕ= = = ≤ ≤ ≤ ≤y yyx z x z x z x z
       ( , ,0) ( , ,1) ( , ,0) 0, 0 1, 0 1;ϕ ϕ ϕ= = = ≤ ≤ ≤ ≤z zzx y x y x y x y

R2) ( , , , ), ( , , , ), ( , , , ), ( , , , ), ( , , , ), ( , , , ), ( , , , ) ( ),∈x y z xx xy yy Tf x y z t f x y z t f x y z t f x y z t f x y z t f x y z t f x y z t C D
       2( , , , ), ( , , , ), ( , , , ), ( , , , ) ( ),∈xyz xxz yyy zzz Tf x y z t f x y z t f x y z t f x y z t L D
       (0, , , ) (1, , , ) (0, , , ) 0, 0 1, 0 1, 0 ,= = = ≤ ≤ ≤ ≤ ≤ ≤x xxf y z t f y z t f y z t y z t T
       ( ,0, , ) ( ,1, , ) ( ,0, , ) 0, 0 1, 0 1, 0 ,= = = ≤ ≤ ≤ ≤ ≤ ≤y yyf x z t f x z t f x z t x z t T
       ( , ,0, ) ( , ,1, ) ( , ,0, ) 0, 0 1, 0 1, 0 ;= = = ≤ ≤ ≤ ≤ ≤ ≤z zzf x y t f x y t f x y t x y t T

R3) 
__

1( , , ) ( ), ( ) [0, ], ( ) 0, 0 .∈ ∈ ≠ ≤ ≤xyzw x y z C Q h t C T h t t T
We seek the first component ( , , , )u x y z t  of the classical solution { ( , , , ) , ( )}u x y z t a t  to problem 

(1)–(5), (8) in the form
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	 , ,
1 1

( , , , ) ( )sin sin sin ,λ γ η
∞ ∞ ∞

= = =

=∑∑∑ k n m k n m
m n k

u x y z t u t x y z 	 (9)

where

	 (2 1) , 1, 2,..., (2 1) , 1, 2,..., (2 1) , 1, 2,...,
2 2 2
π π πλ γ η= − = = − = = − =k n mk k n n m m

	
1 1 1

, ,
0 0 0

( ) 8 ( , , ) sin sin sin , , ,λ γ η= =∫ ∫ ∫k n m k n mu t u x y t x y ydxdydy k n m 1,2,....	 (10)

Applying the formal scheme of the Fourier method to equations (1) and (2), we obtain
	 2

, , , , , , , ,( ) ( ) ( ; , ), , , 1, 2,..., 0 ,µ τ′ + = = ≤ ≤k n m k n m k n m k n mu t u t F u a k n m t T 	 (11)
	 , , , ,(0) ( ; , ), , , 1, 2,...,ϕ τ= =k n m k n mu u a k n m 	 (12)

where
	 2 2 2 2

, , , , , 1, 2,...,µ λ γ η= + + =k n m k n n k n m
	 , , , , , ,( ; , ) ( ) ( ) ( ),= +k n m k n m k n mF t u a f t a t u t

	
1 1 1

, ,.
0 0 0

( ) 8 ( , , , ) sin sin sin , , , 1, 2,...,λ γ η= =∫ ∫ ∫k n m k n mf t f x y z t x y ydxdydz k n m

	
1 1 1

, ,
0 0 0

8 ( , , ) sin sin sin , , , 1, 2,....ϕ ϕ λ γ η= =∫ ∫ ∫k n m k n mx y z x y xdxdydz k n m

Solving problem (11), (12), we find

	
2 2

, , , , ( )
, , , , , ,

0

( ) ( ; , ) , , , 1, 2,..., 0 .µ µ τϕ τ τ− − −= + = ≤ ≤∫k n m k n m

t
t t

k n m k n m k n mu t e F u a e d k n m t T 	 (13)

Substituting the expressions , , ( )k n mu t  ( , , 1, 2, )= k n m  described by (13) into (9), to determine the 
first component of the solution (1)–(5), (8), we have

	
2 2

, , , , ( )
, , , ,

1 1 1 0

( , , , ) ( ; , ) sin sin sin .µ µ τϕ τ τ λ γ η
∞ ∞ ∞

− − −

= = =

 
= + 

 
∑∑∑ ∫k n m k n m

t
t t

k n m k n m k n m
m k n

u x y z t e F u a e d x y z 	 (14)

Further from (8) and (9), с учетом (13), taking into account ( ) 0, 0 ,≠ ≤ ≤h t t T  we get

	
1 1 1

1

0 0 0

( ) [ ( )] ( ) (1,1,1, ) ( , , ) ( , , )− 
′= − −


∫ ∫ ∫a t h t h t f t w x y z f x y z dxdydz

	
2 2

, , , , ( )
, , , , , ,

1 1 1 0

( ; , ) , 0 ,µ µ τϕ τ τ
∞ ∞ ∞

− − −

= = =

 + + ≤ ≤ 
 

∑∑∑ ∫k n m k n m

t
t t

k n m k n m k n m
m k n

p e F u a e d t T 	 (15)

where
1 1 1

2 2 2 2 2 2
, ,

0 0 0

sin sin sin ( , , )( sin sin sin ) .λ λ γ γ η η λ λ γ γ η η= + + + + +∫ ∫ ∫k n m k k n n n m k k n n n mp w x y z x y z dxdydz

Thus, the problem (1)–(5), (8) is reduced to solving the system (14), (15) with respect to the un-
known functions ( , , , )u x y z t  and ( ).a t

Using the definition of the solution of the problem (1)–(5), (8), we prove the following lemma.
Lemma. If { ( , , , ) , ( )}u x y z t a t  is any solution to the problem (1)–(5), (8), then the functions

	
1 1

,
0 0

( ) 4 ( , , ) sin sin , , 1, 2,...λ γ= =∫ ∫k n k nu t u x y t x ydxdy k n

satisfy the system (12) in [0, ].T  
Remark. It follows from the foregoing lemma that to prove the uniqueness of the solution to the 

problem (1)–(5), (8), it suffices to prove the uniqueness of the solution to the system (14), (15).
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Theorem 2. Let the conditions R1)–R4) be satisfied. Then the problem (1)–(5), (8) admits a unique 
solution for sufficiently small values of time.

Consequently, by virtue of Theorem 1, Theorem 2 implies the validity of the following assertion.
Theorem 3. Assume that all the conditions of Theorem 2 are fulfilled and

	
1 1 1

0 0 0

(1,1,1) ( , , ) ( , , ) (0).ϕ ϕ+ =∫ ∫ ∫w x y z x y z dxdydz h

Then problem (1)–(6) has a unique for sufficiently small values of .T
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УДК 519.644.7

КУБАТУРНАЯ ФОРМУЛА НА СФЕРЕ, 
ИСПОЛЬЗУЮЩАЯ В КАЧЕСТВЕ УЗЛОВ ВЕРШИНЫ ИКОСАЭДРА

Воронежский государственный университет

Е. Г. Алипатов

Аннотация. Обсуждается кубатурная формула приближенного вычисления поверхност-
ного интеграла 1-го рода по сфере, использующая в качестве узлов вершины икосаэдра. 
Приводится оценка точности.
Ключевые слова: кубатурная формула, оператор Лапласа — Бельтрами, сферические гар-
моники, икосаэдр.

Введение

Рассмотрим функцию 2: ,f S R→  где 2 3 2 2 2{( , , ) : 1}.S x y z R x y z= ∈ + + =  Для сферы бу-
дем использовать следующую параметризацию:

	
cos sin ,
sin sin ,
cos

x
y
z

ϕ θ
ϕ θ
θ

=
=
=

 0 2 ,ϕ π≤ ≤  0 .θ π≤ ≤

При использовании такой параметризации будем интерпретировать f  как функцию пере-
менных θ  и .ϕ

В работе рассматривается кубатурная формула приближенного вычисления интеграла по 
сфере

	
2

12

1
( ) ( ),

3 iS
i

f x dS f cπ
=

≈ ∑∫ 	 (1)

где ic  — вершины икосаэдра. Устанавливается, что эта формула является точной на первых 36 
собственных функциях оператора Бельтрами — Лапласа (сферических гармониках). Приво-
дится оценка точности обсуждаемой кубатурной формулы.

Ранее кубатурные формулы на сфере обсуждались в работах [1– 4].

1. Сферические гармоники

Оператором Бельтрами — Лапласа [8, c. 721] называют угловую часть оператора Лапласа 
на 3R

	
2 2 2 2

2
2 2 2 2 2 2 2 2

1 1 1sin .
sin sin

r
x y z r r r r r

θ
θ θ θ θ ϕ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   ∆ = + + = + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
А именно, оператор Бельтрами — Лапласа есть

	
2

2 2

1sin .
sinS θ

θ θ θ ϕ
∂ ∂ ∂ ∆ = + ∂ ∂ ∂ 

Известно [6, c. 474], что оператор S∆  является симметрическим и допускает расширение до 
самосопряженного оператора в 2

2 ( ).L S  Спектр оператора S∆  состоит из чисел ( 1);n n nλ = − +  
очевидно, числа nλ  стремятся к −∞  при .n →∞  Собственные подпространства ,

nnE Eλ=  со-
ответствующие ,nλ  имеют размерности 2 1;n +  в качестве ортонормированного базиса в 

nnE Eλ=  можно взять функции
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( ) ( )

( ) ( )

2 1 ( | |)!( , ) cos( ) ( ),
4 ( | |)!

2 1 ( | |)!( , ) sin( ) ( ),
4 ( | |)!

m m
n n

m m
n n

n n mH m P
n m

n n mH m P
n m

θ ϕ ϕ θ
π

θ ϕ ϕ θ
π

−

+

+ −
=

+

+ −
=

+

	 (2)

называемые сферическими гармониками. В приведенных формулах ( ) ( )m
nP x  — присоединен-

ные полиномы Лежандра [7, 8], которые определяются как решения дифференциального урав-
нения

	 ( )
2

2
21 0.

1
d dy mt y
dt dt t

λ
  − + − =   −   

Также известны следующие факты.
Теорема 1. Система функций ( )

, , ,{ }m
n n N m n nH ∈ =− 

 образует ортонормированный базис в 
2

2 ( ).L S  Любая функция f  из 2
2 ( )L S  разлагается в ряд

	 ( ) ( )

1
( , ) , ( , ),

n
m m

n n
n m n

f f H Hθ ϕ θ ϕ
∞

= =−

=∑ ∑
сходящийся по 2L -норме.

Предложение 2. Оператор S∆  коммутирует с любым оператором ортогонального преоб-
разования координат T  в 3.R  Собственные подпространства 

n
Eλ  инвариантными относи-

тельно оператора T : 
	 ( ) .

n n
T E Eλ λ⊆ 	 (3)

2. Кубатурная формула для сферы

Кубатурной формулой называют приближенную формулу для вычисления кратных инте-
гралов, аналогичную квадратным формулам для интегралов по отрезкам.

В настоящей работе обсуждается кубатурная формула для приближенного вычисления ин-
теграла по сфере

	
2

12

1
( ) ( ),

3 iS
i

f x dS f cπ
=

≈ ∑∫ 	 (4)

где ic  — вершины икосаэдра. Число s N∈  назовем порядком точности кубатурной формулы 
(4) , если она является точной на всех подпространствах ,

i
Eλ  0,1, , .i s=   Например, условия 

порядка точности 3 для кубатурной формулы (4) выглядят так:

	

2

2

2

2

2

12
(0) (0)
0 0

1
12

( 1) ( 1)
1 1

1
12

(0) (0)
1 1

1
12

(1) (1)
1 1

1

12
(3) (3)
3 3

1

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

i i S
i

i i S
i

i i S
i

i i S
i

i i S
i

b H c H x dS

b H c H x dS

b H c H x dS

b H c H x dS

b H c H x dS

=

− −

=

=

=

=

=

=

=

=

=

∑ ∫

∑ ∫

∑ ∫

∑ ∫

∑ ∫



	 (5)

Здесь ic  вершины — вершины икосаэдра, которые задаются следующим образом:
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2

1{ } {(0, 1, ), ( 1, ,0), ( ,0, 1)},
1

ic ϕ ϕ ϕ
ϕ

= ± ± ± ± ± ±
+

где 1 5
2

ϕ +
=  — золотое сечение.

Заметим, что в каждом подпространстве 
l

Eλ  имеется линейно независимых гармоник. По-
этому в общем случае для порядка точности s  возникает 2s  уравнений. В частности, для 3s =  
имеем 9  уравнений. Заметим, что в силу ортогональности гармоник имеем

	
2

( ) ( )
,0 ,0

1( ) ,1 .
4

m m
n n n mS

H x dS H δ δ
π

= =∫
Поэтому система уравнений (5) принимает вид

	

12
(0)
0

1
12

( 1)
1

1
12

(0)
1

1
12

(1)
1

1

12
(3)
3

1

( ) 4 ,

( ) 0,

( ) 0,

( ) 0,

( ) 0,

i i
i

i i
i

i i
i

i i
i

i i
i

b H c

b H c

b H c

b H c

b H c

π
=

−

=

=

=

=

=

=

=

=

=

∑

∑

∑

∑

∑



Так как (0)
0

1( ) ,
4

H x
π

=  то первое уравнение можно переписать в виде

	

12

1
12

( 1)
1

1
12

(0)
1

1
12

(1)
1

1

12
(3)
3

1

4 ,

( ) 0,

( ) 0,

( ) 0,

( ) 0,

i
i

i i
i

i i
i

i i
i

i i
i

b

b H c

b H c

b H c

b H c

π
=

−

=
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	 (6)

Расчеты показывают, что минор 1,2,12 ,M  полученный вычеркиванием первого, второго и 
12-го столбцов из матрицы системы (6), отличен от нуля. Таким образом, матрица система (6) 
имеет ранг. Поэтому система (6) имеет решение.

3. Симметрии системы уравнений

Далее будем использовать симметричность выбранных узлов .ic  Обозначим через W  груп-
пу линейных ортогональных преобразований, которые переводят вершины икосаэдра в себя. 
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Такие преобразования будем обозначать .U  Очевидно, группа W  действует на множество 
вершин транзитивно, то есть

	 ,i jc c∀      , :i jU∃     , .i j i jU c c=
Вместе с тем, поскольку преобразования ,i jU  являются ортогональными, в силу предложе-

ния 2
	 , ( ) .i jU E Eλ λ⊆ 	 (7)
Предложение 3. Если для некоторого набора ib  выполнены равенства из системы (6) для 

всех базисных функций ( )m
lH  из подпространства 

l
Eλ  (за исключением 0lλ = ), то 

	
l

h Eλ∀ ∈   
12

1
( ) 0.i i

i
b h c

=

=∑
Напомним, что (0)

0H  — константа. Поэтому любое преобразование ,i jU  действует на (0)
0H  

тождественно, а, следовательно, соответствующее уравнение из системы (6) выполняется и 
для (0)

, 0( ).i jU H  Таким образом, система уравнений (6) не изменяется, если действовать на 
функции ( )m

nH  преобразованиями , .i jU  Отсюда вытекает основное свойство данной системы.

Предложение 4. Коэффициенты 
3ib π

=  всегда являются решением системы (6).
Доказательство. Рассмотрим произвольное уравнение для некоторого подпространства 
0.λ ≠
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( )

1
( ) 0.m

i n i
i

b H c
=

=∑
Применим ,i jU  к нашему уравнению. Тогда вектор ib  все ещё будет решением системы в 

силу предложения 2, причем коэффициенты kb  и jb  при ( ) ( )m
n kH c  и ( ) ( )m

n jH c  поменяются ме-
стами:

	 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 0.m m m m
k n k j n j j n k k n jb H c b H c b H c b H c+ + = + + = 

Отсюда .k jb b=  Так как данное равенство выполняется для всех различных пар индексов 
( , ),i j  то

	 1 2 12 .b b b b= = = =

Первого уравнения из системы (6) непосредственно находится константа .b  Имеем
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1

1 4 .
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b π
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Отсюда

	 4 .
12 3

b π π
= =

Изменяя систему (6), можно составить уравнения для точного интегрирования на подпро-
странствах 

3
,Eλ  

4
Eλ  и 

5
.Eλ  Уравнения системы (6), относящиеся к каждому из этих подпро-

странств, являются линейно независимыми. Поэтому, повторяя предыдущие рассуждения, 
нетрудно показать, что вектор 3,ib π=  1,2, ,12,i =   является решением системы
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Таким образом, кубатурная формула с коэффициентами 
3ib π

=  является точной на соб-

ственных подпространствах 
0
,Eλ  

1
,Eλ  

2
,Eλ  

3
,Eλ  

4
Eλ  и 

5
Eλ  оператора .S∆

4. Оценка погрешности кубатурной формулы

Погрешностью обсуждаемой кубатурной формулы (4) назовем следующую величину
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1
( ) ( ) ( ) .

3 iS
i

E f f x dS f cπ
=

= − ∑∫
Теорема 5. Пусть 2

2 ( ).f L S∈  и 2
2 ( )l

S f L S∆ ∈  для некоторого .l N∈  Тогда погрешность 
формулы (4) допускает оценку 
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Доказательство. Разложим нашу функцию f  в ряд по гармоникам:

	 ( )
,

0
,

n
m

n m n
n m n

f f H
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где ( )

, , .m
n m nf f H=  Обозначим через nY  следующие отрезки ряда
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Таким образом,
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∞
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=∑ 	 (9)

Подставим это разложение в формулу для погрешности:
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3 3i n n iS S
i n i n
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В силу равномерной сходимости [6, с. 489] ряда (9) можно поменять знаки суммирования 

и интегрирования местами. Затем воспользуемся тем, что формула (4) точно интегрирует 
функции nY  для 0,1,2,3,4,5n =
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В силу ортогональности гармоник окончательно получаем, что
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Из теории кубатурных формул на сфере известно [6], что

	
1
2

2

2( ) ,l l
n S L

Y x Kn f−≤ ∆      2 ,x S∈

где K  — константа не зависящая от функции .f  Причем константу K  можно оценить как
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	 3 .
4

K
π

≤

Применяя эту оценку, получаем
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Замечание 6. Численные расчеты для ряда из теоремы 5 приводят к следующим значениям 

оценкам для погрешности для различных l
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4( ) 0.000013643 ,S L
E f f≤ ∆       4,l =
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-7 5( ) 3.31101  10 ,S L
E f f≤ ∗ ∆       5,l =
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УДК 517.9

ТЕПЛОВЫЕ ВОЛНЫ В СРЕДАХ С АНОМАЛЬНОЙ ДИФФУЗИЕЙ: 
АНАЛИТИЧЕСКОЕ РЕШЕНИЕ И ФИЗИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ

Воронежский государственный университет

Х. Алкади

Аннотация. Исследуется задача субдиффузии в полупространстве с периодическим гра-
ничным условием. Для уравнения с дробной производной Римана — Лиувилля получено 
аналитическое решение в виде суперпозиции затухающих температурных волн. Изучены 
свойства решения: экспоненциальное затухание амплитуды, сдвиг фазы и зависимость 
глубины проникновения от параметра субдиффузии. Показано, что при значении параме-
тра субдиффузии, равном единице, решение переходит в классический случай. На основе 
решения предложен метод определения параметра субдиффузии по данным измерений 
температуры на двух глубинах. Результаты применимы в геофизике и материаловедении 
для анализа теплопереноса в средах с фрактальной структурой.
Ключевые слова: уравнение субдиффузии, дробные производные, тепловые волны, пара-
метр субдиффузии, периодические условия, затухание амплитуды.

Введение

За последние десятилетия уравнения с дробными производными нашли широкое приме-
нение для моделирования процессов аномального переноса в сложных средах. В отличие от 
классической диффузии, описываемой уравнением Фурье, процессы субдиффузии характери-
зуются нелокальностью по времени и медленным расплыванием возмущений. Это связано с 
фрактальной структурой среды и наличием ловушек.

Особый интерес представляют тепловые дробные волны как решения дробного уравнения 
теплопроводности:

	 ( ),      0,1 ,t u a uα α∂ = ∆ ∈
В этом уравнении t

α∂  — обозначает дробную производную в смысле Капуто. Данная мо-
дель адекватно описывает процессы теплопереноса в пористых средах, геологических струк-
турах и композитных материалах.

1. Постановка задачи и формулировка результата

В скалярном случае рассматривается задача отыскания решения уравнения

	 ( ) ( ) ( )
2

2

, ,
,       0, , ,

u t x u t x
x t

x t

α

α

∂ ∂
= > ∈ −∞ +∞

∂ ∂
	 (1)

где ( ),u t x
t

α

α

∂
∂

 — дробная производная Римана — Лиувилля порядка (0,1], α ∈  ( , )t∈ −∞ ∞  функ-

ция ( , )u t x  удовлетворяет условиям
	 ( ,0) ( )u t tϕ= 	 (2)
	 ( )lim ,  0

x
u t x

→∞
= 	 (3)

где ( )tϕ  — периодическая функция с рядом Фурье

	 00

1

2( ) cos ( ) .
2 n n

n

a nt A t
T
πϕ δ

∞

=

 = + −  
∑ 	 (4)
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В случае 1a <  интересно проследить влияние параметра замедленной диффузии a  на глу-
бину проникновения тепла в почву.

Основным результатом этих исследований является:
Теорема. Если в условии (2) ( )tϕ  — периодическая функция вида (4), то задача (1)–(3) име-

ет единственное решение, и оно представимо в виде

	 ( ) ( )
1

, , ,n
n

u t x u t x
∞

=

=∑
где

	 ( )
2cos 04 2, cos sin .

4
nw x

n n n n n nu t x A e w x w t w
ααπ ααπ δ

−  = − + 
 

2. Доказательство теоремы

Докажем сначала эту теорему для ( )  cos( )t A wtϕ =  то есть решаем задачу нахождения ре-
шения уравнения (1), удовлетворяющее условию

	 ( ,0)   ( ).u t Acos wt= 	 (5)
Решение будем искать в виде
	 ,( , )   ( ) iwtu t x A g x e= 	 (6)

где ( )g x  — неизвестная функция.
Тогда, подставляя (6) в (1) и пользуясь (2), получаем уравнение для ( )g x
	 ( )  ( )  ( )  0.g x iw g xα′′ − = 	 (7)
Общее решение уравнения (7) имеет вид

	 ( ) ( )2 2

1 2(2)     . iw x iw xg C e C e
α α

−= +
Тогда, учитывая, что

	 ( )
2

2 22   cos    sin  ·   cos    sin   .
2 2 4 4

iw i w i w

α
α αα π π απ απ          = + = +                    

Из (2) и (3) следует, что

	 ( )
2

2
cos    sin  

4 4( )
i w x

iw xg x e e

α
α απ απ    − +    

    = = = 	

	
2(cos

4 2 2cos sin sin sin .
4 4
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e w x i w x

α
απ α ααπ απ −  
 

    
= +    

     
	 (8)

Подставляя представление ( )g x  из (8) в (7), получаем решение задачи (1)-(2)-(3):

	 ( ) ( )
2(cos

4 2 2,    cos sin sin sin  cos  
4 4

w x
u t x Ae w x i w x wt

α
απ α ααπ απ −  
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α
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 
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	 (9)

Выделяя в равенстве (9) действительную часть, окончательно получаем решение задачи:

	 ( )
2(cos

4 2,    cos sin .
4

w x
u t x Ae w x wt

α
απ ααπ −  
 

  
= −  

   
	 (10)

Очевидно, что при 1,α =  1n =  формулы (10) и (4) совпадают.



40

Взяв температурные волны, соответствующие каждому слагаемому в разложении (4), ис-
пользуя (10), получаем (5).

Замечание. Из хода рассуждений при доказательстве (10) следует, что если в условиях (2) 
sin( ),A wtϕ =  то решение соответствующей задачи имеет вид

	 ( )
2(cos

4 2,    sin sin .
4

w x
u t x Ae w x wt

α
απ ααπ −  
 
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= +  

   
Далее, учитывая, что по теореме С. Г. Крейна функцию ( , )u t x  можно записать в виде

	 ( ) ( ),  , ,du t x u x x
dt

α

α ϕ
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 — сильно непрерывная полугруппа с генератором ,d
dt

α

α

 
− − 
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 заключаем, 

что решение является единственным в классе ограниченных функций.

3. Физическая интерпретация и приложения

Полученное решение позволяет дать следующую характеристику процесса субдиффузии 
(распространения температурной волны), имеющую важное значение для приложений в гео-
физике и материаловедении:

3.1. Амплитуда колебаний

Амплитуда колебаний экспоненциально убывает с глубиной:

	 ( )
2(cos )

4 .   
w x

A x Ae
α

απ
−

=

3.2. Сдвиг фазы

Температурные колебания в почве происходят со сдвигом фазы. Время запаздывания мак-
симумов (минимумов) температуры в почве от соответствующих моментов на поверхности 
пропорционально глубине:
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1  sin .
4

x
w
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απδ
−

 =  
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3.3. Глубина проникновения тепла

Глубина проникновения тепла в почву зависит от периода колебаний температуры на по-
верхности и от параметра субдиффузии .α

Относительное изменение температурной амплитуды равно:

	
2cos

4 .( ) w xA x e
A

α
απ

−
=

Эта формула показывает зависимость глубины проникновения температурных волн от па-

раметров α  и .w  То есть, чем больше величина 2( , ) cos ,
4

w w x
ααπµ α  =  

 
 тем меньше глубина 

проникания.
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Анализируя функцию ( , ),wµ α  заключаем, что в силу оценок 2 ( , ) 1,
2

wµ α< <  приближен-

но можно считать 2( , ) .w w
α

µ α ≈
И, следовательно, если
	 0   1  ,w< ≤

то при возрастании ,α  ( , )wµ α  убывает и проникаемость увеличивается и становится макси-
мальной при 1.α =

Если же 1w >  то меньшим α  соответствует большая проникаемость.

3.4. Определение параметра субдиффузии

Из решения следует, что температура ( , ) u t x  для любых x  является периодической функ-
цией времени.

Тогда исходя из ее вида гармоник ( , ) nu t x  заключаем, что справедливо соотношение

	
( ) ( )
( ) ( )

( )2
1 2

2 2
cos1 1 4

2 2
2 2

,nw x xn n
n

n n

a x b x
B e

a x b x

α
απ

− −+
= =

+

которое показывает, что если произвести измерение температуры в каких-нибудь точках 1x  и 
2x  за полный период, то при известном w  можно, пользуясь приближением

	 2 2cos   ,
4 n nw w

α ααπ  ≈ 
 

получить значение параметра субдиффузии α  по формуле

	
( )1 2

12 ln
  .

 ln 
nB

w x x
α =

−

Заключение

В работе получено аналитическое решение задачи субдиффузии с периодическим гранич-
ным условием и исследованы его физические свойства. Предложенный метод определения па-
раметра субдиффузии может быть использован в экспериментальных исследованиях теплопе-
реноса в сложных средах.
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МЕТОД ПОДОБНЫХ ОПЕРАТОРОВ В ИССЛЕДОВАНИИ ДИФФЕРЕНЦИАЛЬНЫХ 
ОПЕРАТОРОВ С ИНТЕРВАЛЬНЫМ ВОЗМУЩЕНИЕМ И ИНВОЛЮЦИЕЙ
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2Воронежский государственный технический университет

А. Г. Баскаков1, Г. В. Гаркавенко1, Л. Н. Костина1, Н. Б. Ускова2

Аннотация. В работе изучаются спектральные свойства дифференциальных операторов 
первого порядка на отрезке, возмущенных интегральным оператором с суммируемым с 
квадратом ядром с инволюцией. Показано, что при условии малости возмущения иссле-
дуемые операторы подобны операторам, которые являются ортогональной прямой сум-
мой операторов ранга 1. При отсутствии малости они представимы как ортогональная 
прямая сумма оператора конечного ранга и операторов ранга один. Производятся асим-
птотические оценки собственных значений и собственных векторов исследуемых опера-
торов.
Ключевые слова: дифференциальный оператор первого порядка, интегральный опера-
тор, спектр, ортогональная прямая сумма операторов, собственные векторы, инволюция.

Введение

Дифференциальные операторы с инволюцией являются объектом глубокого исследования 
(см., например, работы [1–10] и ссылки в них). Напомним, что если H  — гильбертово про-
странство, End H  — алгебра ограниченных операторов в H , то J End H∈  называется опера-
тором инволюции, если 2 ,J I=  где I  — тождественный оператор. Стандартным и наиболее 
изученным является случай, когда оператор инволюции находится при операторе умножения 
на потенциал, но также рассматриваются операторы с инволюцией при дифференциальном 
операторе. 

В работах [11–13] рассматривался дифференциальный оператор первого порядка с инте-
гральным возмущением, исследование его спектральных свойств проводилось с помощью ме-
тода подобных операторов, причем адаптированную к операторам такого класса версию можно 
найти в [11, 12, 14]. Отметим, что дифференциальные операторы первого порядка с инволюци-
ей в работах [6–8] также исследовались с помощью метода подобных операторов, но с примене-
нием отличающейся его схемы, связанной с предварительным преобразованием подобия.

Ниже мы будем рассматривать дифференциальные операторы первого порядка с инте-
гральным возмущением, как и в работах [11–13], но с инволюцией при возмущении. Заметим, 
что интегральные операторы с инволюцией на прямой изучались, например, в [15, 16].

1. Постановка задачи

Приступим к постановке задачи. В комплексном гильбертовом пространстве 2[0, ]H L ω=  
измеримых по Лебегу на [0, ]ω  и суммируемых с квадратом модуля классов эквивалентности 
функций со скалярным произведением 

	
0

1( , ) ( ) ( ) , , ,x y x t y t dt x y H
ω

ω
= ∈∫

рассмотрим оператор

	 1
2: ( ) [0, ] .dA D A W H H

dt
ω= ⊂ ⊂ →
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Здесь через 1
2 [0, ],W ω  обозначено пространство Соболева абсолютно непрерывных функ-

ций из H  c производными из .H  Оператор A  будет играть роль невозмущенного оператора в 
методе подобных операторов с хорошо изученными спектральными свойствами. Его просты-
ми собственными значениями являются числа

	 2( ) , ,n n
nA i nπλ λ

ω
= = ∈

собственными векторами — функции

	
2

( ) , [0, ],n

ni tt
ne t e e t n

π
λ ω ω= = ∈ ∈

и спектральные проекторы задаются равенствами
	 ( )

| |
({ }, ), ( , ) , , , , ,n n n n n k j

j k
P P A P x x e e P P x H n kλ

≤

= = = ∈ ∈ ∈∑  

Далее через 2 ( )H End Hσ ⊂  обозначим двусторонний идеал операторов Гильберта — 
Шмидта с нормой, обозначаемой 

2
.X  Свойства пространства 2 ( )Hσ  можно найти в [17].

Каждому оператору X End H∈  ставятся в соответствие две матрицы: операторная, 
( ),ijX X  где ,ij i jX P XP=  , ,i j∈  и числовая ( ),ijX x  где ( , ),ij j ix Xe e=  , .i j∈

Рассмотрим интегральный оператор B End H∈  с суммируемым с квадратом ядром по обо-
им аргументам :[0, ] [0, ]K ω ω× →

	 ( )
0

( ) ( , ) ( ) ,Bx t K t s x s ds
ω

= ∫
тогда

	 2 ( )B Hσ∈  и 2 2

2
0 0

( , ) .B K t s ds dt
ω ω

= < ∞∫ ∫
В пространстве H  введем стандартный оператор инволюции формулой ( ) ( ) ( ),Jx t x tω= −  
[0, ].t ω∈
В H рассматривают следующие возмущенные операторы : ( ) ,iL D A H H⊂ →  1,4:i =
	 1 2 3 4, , , .L A B L A BJ L A JB L A JBJ= − = − = − − −
Заметим, что оператор 1L  исследовался в работах [11–13], но нам также удобно привести 

соответствующие результаты в другой формулировке.
Сделаем несколько очевидных, но важных замечаний. 
Замечание 1. Если 2 ( ),B Hσ∈  то операторы , ,BJ JB JBJ  также принадлежат 2 ( )Hσ  и их 

нормы в 2 ( )Hσ  совпадают.
Замечание 2. Оператор J End H∈  действует на собственные векторы ( ),ne t  [0, ],t ω∈  n∈ 

по формуле ( ) ( ),n nJe t e t−=  ,n∈  имеет матрицу вида ( ),nlJ j  , ,n l∈  где

	
1, ,
0, .nl

n l
j

n l
= −

=  ≠ −
Замечание 3. Пусть ( ),ijB b  , ,i j∈  ( , ),ij j ib Be e=  тогда операторы , ,BJ JB JBJ  имеют 

числовые матрицы ,( ),i jBJ b −  ,( ),i jJB b−  ,( ),i jJBJ b− −  , .i j∈

2. Прямые суммы

Пусть в гильбертовом пространстве H  есть ортогональный базис из подпространства 
{ , }nH n∈  (см. [17]) таким образом, H  представимо в виде прямой суммы взаимно ортого-
нальных ненулевых подпространств 

	 .nn
H H

∈
= ⊕



	 (1)
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Следовательно, в H  есть разложение единицы I  системой ортопроекторов
	 , : , .n n n

n
I P P H H n

∈

= → ∈∑




Определение 1. [7] Линейный оператор : ( )A D A H H⊂ →  называется ортогональной 
прямой суммой ограниченных операторов ,n nA End H∈  n∈  относительно разложения (1):

	 .nn
A A

∈
= ⊕



	 (2)

если ( )nH D A⊂  для всех ;n∈  каждое подпространство nH  инвариантно относительно A  и 
,

nn HA A=  ;n∈  ,n n
n

Ax A x
∈

=∑


 ( ),x D A∈  ,n nx P x=  .n∈

Определение 2. [7] Пусть U End H∈  — обратимый оператор и пространство H  предста-
вимо в виде (1). Тогда разложение пространства H в виде

	 .n nn n
H UH H

∈ ∈
= ⊕ = ⊕

 

 	 (3)

называется квазиортогональным или U -ортогональным. Последовательность подпространств 
,nH  ,n∈  называется базисом Рисса из подпространств. Если же ,U I W= +  где 2 ( ),W Hσ∈  то 

базис Рисса называется базисом Бари из подпространств H  (см. [17], [18]).
Определение 3. [7] Пусть : ( )A D A H H⊂ →  — линейный замкнутый оператор. Он назы-

вается квазиортогональной (U-ортогональным) прямой суммой операторов ,nA  n∈относи-
тельно разложения пространства H  вида (3), если имеет место формула (2) и 1,n nA UA U −=  

.n∈

3. Основные результаты

Пусть kI  — тождественный оператор в kH  и 2[0, ].H L ω=  Тогда невозмущенный оператор 
A  есть ортогональная прямая сумма операторов ранга один 2

kk

kA i Iπ
ω∈

= ⊕


 относительно раз-

ложения пространства H  в прямую сумму вида (1), где Im Im ({ }, ),k k kH P P Aλ= =  .k∈  Для 
оператор A  можно указать и другую прямую ортогональную сумму операторов вида 

( ) | |

2 ,k jj k

jA A i Iπ
ω>

 = ⊕ ⊕ 
 

 где 
( )kk HA A=  — сужение оператора A на подпространство ( ) ( )Imk kH P=  

относительно представления пространства H  в виде 

	 ( )( ) | |
.k jj k

H H H
>

= ⊕ ⊕ 	 (4)

Теорема 1. Пусть

	
2

.
2

B π
ω

< 	 (5)

Тогда каждый из операторов ,iL  1,4i =  подобен оператору ,i iL A V= −  1,4,i =  где оператор 
2 ( )iV Hσ∈  есть ортогональная прямая сумма ijj

V
∈
⊕


 операторов ранга один. Имеют место ра-
венства ( ) ,i i i ijj

LU U A V
∈

= − ⊕


 1,4,i =  ,iU End H∈  2 ( ),iU I Hσ− ∈  и операторы ,iL  1,4i =  

представляют собой iU  — ортогональную, 1,4i = , прямую сумму вида 

	 ( ) 1( ) , 1, 4,i i j j ij ij
L U I V U iλ −

∈
= ⊕ − =



относительно iU  — ортогонального разложения пространства 2 .i jj
H L U H

∈
= = ⊕



Отметим, что условие (5) теоремы 1 довольно ограничительное и в теореме 1 матрицы опе-
раторов ,iL  1,4i =  диагональные, а базис Рисса составлен из подпространств размерности 1. 
Если снять условие (5), то возможно приведение преобразованием подобия оператора ,iL  1,4i =  
к оператору ,iL  1,4,i =  но не диагонального, как в теореме 1, а блочно-диагонального вида.
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Теорема 2. Существует такое натуральное 0k > , что каждый из операторов , 1, 4iL i =  
подобен оператору i iL A V= − , 1,4i = , где iU End H∈ , 2 ( )iI U Hσ− ∈ , подпространства 

( ) ( )Imk kH P= , Im ,j jH P j k= >  инвариантны относительно операторов A  и iV , 1,4.i =  Опера-
торы iL , 1,4i =  есть iU  — ортогональная, 1,4i = , прямая сумма

	 ( ) 1
( ) | |

( ) , 1, 4i i i k ij ij k
L U A V V U i−

>

 = − ⊕ ⊕ = 
 

относительно iU  — ортогонального разложения пространства ( )( ) | |
.i k i jj k

H U H U H
>

= ⊕ ⊕  Опе-
раторы ( )i kV , 1,4i =  имеют ранг 2 1k + , операторы ijV  ранг один. Подпространства ( ){ i kU H , 

i jU H ,  | | }j k>  образуют базис Бари из подпространств, и, в частности, базис Рисса из подпро-
странств.

Для описания асимптотики спектра операторов ,iL  1,4i =  нами будет использоваться ба-
нахово пространство ,p  1 p≤ < ∞  суммируемых со степенью 1 p≤ < ∞  двусторонних ком-

плексных последовательностей с нормой 
1/

( ) ,
p

p

p
n

x x n
∈

 =  
 
∑


 а также величины ˆ( , ),k n m

,n m∈  определяемые формулой

	
0 0

1ˆ( , ) ( , ) ( ) ( ) .n mk n m K t s e t e s ds dt
ω ω

ω − −= ∫ ∫
Теорема 3. В условиях теоремы 2 спектр каждого из операторов , 1, 4iL i =  допускает пред-

ставление вида

	 ( )( ) | |
( ) ( ) { ( )} , 1, 4i k i j ij k
L L L iσ σ λ

>
= ∪ ∪ = ,	 (6)

где множества ( ) ( ), 1, 4k iL iσ =  содержат не более 2 1k +  собственных значений,
	 ( ) ( ) ( ), | | , 1, 4.j i j j i j iL f L L j k iλ λ δ= − + > = 	 (7)

Последовательности ( ( ), )j iL jδ ∈ ,  1,4i = , принадлежат 1 , а числа ( )j if L  определяются 
формулами

	 1 2
ˆ ˆ( ) ( , ), ( ) ( , ),j jf L k j j f L k j j= − =  3 4

ˆ ˆ( ) ( , ), ( ) ( , ), | | .j jf L k j j f L k j j j k= − − = − >
Следствие 1. При выполнении условия (5) формула (6) принимает вид ( ) { ( )},i i ij

L Lσ λ
∈

= ∪


 
1,4,i =  а формула (7) имеет место для всех .j∈
Теорема 4. Собственные векторы ( ),j ie L  ,j∈  1,4i =  при выполнении условия (5) обра-

зует в H  базис Рисса, базис Бари и имеют место формулы
	 ( ) , , 1, 4,j i i je L U e j i= ∈ =

	 '( ) ,j i j je L e δ− ≤  где '
2.jδ ∈

Заключение

Операторы с инволюцией достаточно плотно исследуются в настоящее время. В данной ра-
боте для возмущенного дифференциального оператора первого порядка с интегральным воз-
мущением, как с инволюцией, так и без нее, получены теоремы о подобии диагональному или 
блочно-диагональному оператору. Это соответствует представлению подобного данному опе-
ратора в виде ортогональной прямой суммы операторов конечного ранга. А также получены 
асимптотические оценки собственных значений и собственных векторов. Интерес представ-
ляют собственные значения, которые позволяют в дальнейшем выписать группу операторов, 
генератором которой является исследуемый оператор и применять ее в вопросе отыскания 
слабых и обычных решений некоторых классов задач.
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УДК 51-7

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ РАСХОДОМ ЭНЕРГИИ 
С УЧЕТОМ ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ

Воронежский государственный университет

Е. П. Белоусова

Аннотация. Освоение человеком любого вида энергии имеет как положительные, так и 
отрицательные последствия. С одной стороны использование энергетических ресурсов, 
как способных к восстановлению, так и не способных позволяет производить продук-
ты полезные для общества, пользоваться различными механизмами, которые улучшают 
качество жизни людей. Однако, процессы производства энергии и функционирование 
различных приборов, машин, устройств негативно влияют на окружающую среду. В этой 
связи возникают задачи определения такого режима использования ресурсов, который 
позволяет свести это отрицательное воздействие к минимуму и получить при этом мак-
симальную пользу для человека.
Ключевые слова: оптимальное управление, принцип максимума Понтрягина, дифферен-
циальные уравнения, окружающая среда, потребление энергии, функция полезности.

Введение

Задача производства и рационального использования различных видов энергетических 
ресурсов с математической точки зрения приводит к задаче оптимального управления. Будем 
рассматривать процесс освоения одного вида энергии. Математическая модель в этом случае 
содержит величины, которые непрерывно меняются во времени и поэтому соединяются меж-
ду собой дифференциальными связями. Задача сводится к максимизации некоторой величи-
ны, которая определяется функцией полезности.

Содержание

Введем в рассмотрение необходимые величины. Обозначим через ( )X t  — количество 
энергии определенного вида, используемой при производстве товаров в момент времени ,t  
через ( )v t  — скорость расходования этой энергии в момент времени .t  Будем считать, что вре-
мя принимает значения на ограниченном промежутке 0 .t T≤ ≤  Нетрудно увидеть, что связь 
между этими величинами задается следующим дифференциальным уравнением

	 ( ) ( ).X t v t′ = − 	 (1)
Пусть объем производимых товаров и услуг описывается функцией ( ) 0.c v >  Понятно, что 

представляет интерес ситуация, когда с течением времени этот объем увеличивается и, следо-
вательно, производная ( ) 0.c v′ >  Использование энергии в производственных целях, безуслов-
но, приводит к негативному воздействию на окружающую среду. Для того, чтобы проследить 
масштаб загрязнения, введем в рассмотрение фактор-функцию ( ) 0.p v >  Поскольку расход 
энергии приводит к усилению загрязнения, то ее производная ( ) 0.p v′ >  Будем считать, что 
окружающая среда способна к самоочищению при использовании определенного вида энер-
гии. Пусть далее функция ( , )U c p  устанавливает зависимость уровня полезности для обще-
ства  использования  энергии от величин ( )c v  и ( ).p v  Функцию ( , )U c p  часто называют функ-
цией полезности [1]. Принимая во внимание смысл переменных ( )c v  и ( )p v  можно 
предположить, что функция полезности обладает следующими свойствами

	
2 2 2

2 20, 0, 0, 0, 0.U U U U U
c c p p p c

∂ ∂ ∂ ∂ ∂
> < < < =

∂ ∂ ∂ ∂ ∂ ∂
	 (2)
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Поскольку есть возможность выбирать рационально только темп использования энергети-
ческих ресурсов, то представляется естественным выбрать в данной задаче в качестве управ-
ляющей функцию ( ),v t  а в качестве функции состояния ( ).X t  Введем критерий оптимально-
сти в виде

	
0

( ( ( )), ( ( )) max.
T

tU c v t p v t e dtδ →∫ 	 (3)

Такой функционал называется целевым функционалом с дисконтирующим множителем 
[2, 3]. Здесь 0δ >  некоторая постоянная величина. Очевидно, что управляющая функция ( )v t  
принимает положительные значения, т. е. имеет место условие

	 ( ) 0,v t >  0 .t T≤ ≤ 	 (4)
Зададим дополнительные граничные условия для функции состояния в виде
	 0(0) , ( ) 0.TX X X T X= = ≥ 	 (5)
Задача (1)–(5) — это задача оптимального управления [4, 5]. Для ее решения будем приме-

нять принцип максимума Понтрягина. Для этого выпишем сначала функцию Гамильтона [6]. 
В данном случае она имеет представление 

	 ( , , , ) ( , ) .tH v c p U c p e vδλ λ= − 	 (6)
Здесь ( )tλ  — сопряженная функция. На оптимальном управлении ( )v t∗  функция Гамиль-

тона — Понтрягина ( , , , )H v c pλ  достигает своего максимального значения. Тогда имеет место 
равенство

	
( ) 0

( , , ( ), ( )) max ( ( ( ), ( )) ).
v t

U v c v p v U c v p v vλ λ∗ ∗ ∗ ∗

>
= − 	 (7)

Точка максимума функции (6) обращает в ноль ее первую производную. Поэтому

	 ( ) 0.tH U dc U dp e t
v c dv p dv

δ λ
 ∂ ∂ ∂

= ⋅ + ⋅ − = ∂ ∂ ∂ 
	 (8)

Вторая производная, соответственно, на этой функции должна принимать отрицательное 
значение. А именно

	
2 22 2 2 2 2

2 2 2 2 2 0.tH U dc U d c U dp U d p e
v c dv c dv p dv p dv

δ
 ∂ ∂ ∂ ∂ ∂   = + ⋅ + + ⋅ ⋅ <    ∂ ∂ ∂ ∂ ∂     

	 (9)

Функция ( )tλ  является решением сопряженного дифференциального уравнения

	 .d H
dt X
λ ∂
= −

∂
	 (10)

Поскольку функция Гамильтона — Понтрягина не зависит от переменной состояния, то 
получаем, что

	 0.d
dt
λ
=

Следовательно, функция ( )tλ  постоянна. Пусть ( ) ,t Aλ =  где A  некоторое число, для всех 
[0, ].t T∈  Поскольку по условию задачи 0,TX ≥  то ( ) 0Tλ ≥  и, значит, 0.A ≥  Вернемся к урав-

нению (8) и немного преобразуем его. Получим

	 tU dc U dp e A
c dv p dv

δ ∂ ∂
⋅ + ⋅ = ∂ ∂ 

или

	 .tU dc U dp Ae
c dv p dv

δ−∂ ∂
⋅ + ⋅ =

∂ ∂
	 (11)
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Так как время присутствует в этом уравнении, то искомая функция скорости зависит от .t  
Нетрудно увидеть, что в левой части соотношения (11) находится полный дифференциал 
функции полезности ( , ).U c p  Тогда, очевидно, справедливо равенство

	 ( , ) .tdU c p Ae δ−=
Учитывая, что обе переменные c и p являются функциями скорости, получаем соотношение

	 0.tdU Ae
dv

δ−− = 	 (12)

Введем теперь в рассмотрение функцию ( ) .tS t Ae δ−= −  С ее помощью уравнение (12) мож-
но переписать в виде

	 ( ) ( ) 0.U v S t′ + = 	 (13)
Заметим, что
	 ( ) ( ).tS t A e S tδδ δ−′ = = −
Отсюда следует представление

	 ( ) 0.
( )

S t
S t

δ
′

+ = 	 (14)

С другой стороны из уравнения (13), очевидно, вытекают равенства 

	
( ) ( ),
( ) ( ) ( ).

S t U v
S t U v v t

′= −
 ′ ′′ ′= − ⋅

	 (15)

Подставим представления (15) в (14). Получим следующее уравнение

	 ( ) ( ) 0.
( )

U v v t
U v

δ
′′

′⋅ + =
′

	 (16)

Выразим из (16) производную управляющей функции ( )v t  и выпишем дифференциальное 
уравнение для ее нахождения. Оно имеет вид

	
1

( )( ) .
( )

U vv t
U v

δ
−

′′ ′ = − ′ 
	 (17)

Остается только проинтегрировать полученное уравнение и вычислить значение функци-
онала (3) на оптимальном решении. 

Проиллюстрируем приведенные рассуждения на примере. Предположим, что функции 
( )c v  и ( )p v  выбраны таким образом, что справедливы все предположения оптимизационной 

задачи (1)–(5), а  функция полезности после соответствующих подстановок имеет вид
	 ( ) ,U v v L= + 	 (18)

где L  — некоторое положительное число. Проверим свойства для ( ).U v  Получим

	 1( ) 0
2

U v
v

′ = >  и 
3

1 1( ) 0.
4

U v
v

′′ = − <

Функция ( , )U c p  может выглядеть, например, следующим образом
	 2( , ) .U c p c p= −
Убедимся, что все требования из условий (2) выполнены. Для этого проверим знаки всех 

производных первого и второго порядков. Имеем

	
2

2 3

1 1 10, 0,
42

U U
c cc c

∂ ∂
= > = − <

∂ ∂
 2 0,U p

p
∂

= − <
∂

	
2 2

2 2, 0.U U
p c p

∂ ∂
= − =

∂ ∂ ∂
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Составим теперь уравнение для нахождения управляющей функции скорости. Оно имеет 
следующий вид

	
1 1

3

1 1 1 1( ) .
4 22

v t
vvv

δ δ
− −   ′ = − − ÷ = − −   

  
Отсюда вытекает, что уравнение для определения оптимального управления имеет вид

	 ( ) 2 .dv t v
dt

δ= 	 (19)

Проинтегрировав равенство (19), находим общую формулу для решения задачи в виде
	 2( ) .tv t c e δ= ⋅ 	 (20)
Подставим теперь функцию (20) в равенство (1). Получим соотношение для определения 

функции состояния в виде

	 2( ) .tdX t c e
dt

δ= − ⋅

Общее решение такого дифференциального уравнения имеет вид

	 2
1( ) .

2
tcX t e cδ

δ
= − +

Осталось воспользоваться граничными условиями (5). А именно

	 2
1 0 1(0) , ( ) .

2 2
T

T
c cX c X X T e c Xδ

δ δ
= − + = = − + =

Вычисляем значения констант c  и 1.c  Вычитая из второго уравнения первое, получаем

	 2
0 ,

2 2
T

T
c ce X Xδ

δ δ
− + = − −

	 2
0(1 ) .

2
T

T
c e X Xδ

δ
− = −  

После небольших преобразований имеем

	 0
2

( )2 ,
1
T

T

X Xc
e δ

δ−
=

−
 2 1

1 0 0 0(1 ) ( ).
2

T
T

cc X X e X Xδ

δ
−= + = + − −

Таким образом оптимальная управляющая функция имеет вид
	 2 1 2

0( ) (1 ) 2 ( ) .T t
Tv t e X X eδ δδ∗ −= − − 	 (21)

Принимая во внимание, что запас энергии со временем истощается, очевидно, что справед-
ливо неравенство

	 0.TX X<
Отсюда понятно, что условие для скорости ( ) 0v t∗ >  не нарушено. Остается найти опти-

мальное значение функционала (3). Получаем в нашем случае

2 1 1/2
0

0

(((1 ) 2 ( )) )
T

T t t
Te X X e Le dtδ δ δδ−− − + =∫

1/2
2 1

0
1 ((1 ) 2 ( )

T

T t t
T

o

Le X X e eδ δ δδ
δ δ

− − − + = 
 

 

2 1 1/2
0

1 ( 1)(((1 ) 2 ( )) ).T T
Te e X X Lδ δ δ

δ
−= − − − +

Заключение

Таким образом, в работе удалось построить уравнение, которое позволяет аналитически 
вычислять управляющую функцию и находить оптимальный режим расхода энергии и воз-
действия на окружающую среду. Заметим, что присутствие в целевом функционале дискон-
тирующего множителя исключает наличие стационарного оптимального режима управления.
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УДК 517.95

ЗАДАЧА С НЕЛОКАЛЬНЫМ ИНТЕГРАЛЬНЫМ УСЛОВИЕМ 
ДЛЯ УРАВНЕНИЯ ЧЕТВЕРТОГО ПОРЯДКА

ПАО «Банк ПСБ»

А. В. Богатов

Аннотация. В докладе рассматривается задача с нелокальным интегральным условием 
первого рода для уравнения четвертого порядка с кратными характеристиками, которое 
можно рассматривать как обобщение уравнения Буссинеска — Лява. Особенностью зада-
чи является то, что для рассматриваемого уравнения можно поставить и начально-крае-
вые задачи, и задачи типа задачи Гурса. В этом случае для доказательства разрешимости 
можно применить как классические, так и нестандартные методы. Доказана однозначная 
разрешимость поставленной задачи. Доказательство базируется на априорных оценках.
Ключевые слова: нелокальная задача, интегральные условия, уравнение четвертого по-
рядка, разрешимость задачи, пространства Соболева.

Введение

Задачи с нелокальными условиями для уравнений с частными производными продолжают 
вызывать интерес исследователей, что связано с их приложениями [1].

Большинство работ по этой тематике связано с изучением задач для уравнений второго 
порядка.

В докладе рассматривается задача с нелокальным интегральным условием для уравнения 
четвертого порядка, которое можно интерпретировать как обобщение уравнения Буссине-
ска — Лява. Для этого уравнения можно поставить как начально-краевые задачи, так и за-
дачи типа задачи Гурса. Это обстоятельство, а также вид нелокального условия, позволили 
разработать новый подход к доказательству разрешимости поставленной нелокальной задачи 
и реализовать его.

1. Постановка задачи

В области (0, ) (0, )TQ l T= ×  рассмотрим уравнение
	 ( ) ( , )tt x x xxttu au bu cu f x t− − + = ,	 (1)

где ( , ) 0a x t >  всюду в TQ , ( ) 0b t >  в [0, ]T  и поставим следующую задачу: найти решение урав-
нения (1), удовлетворяющее начальным условиям

	 ( ,0) ( ), ( ,0) ( ),tu x x u x xφ ψ= = 	 (2)
краевому условию

	 (0, ) 0xu t = 	 (3)
и нелокальному условию

	
0

( , ) ( , ) ( ).
l
K x t u x t dx h t=∫ 	 (4)

Заметим, что задачу (1)–(4) можно трактовать как интегральный аналог задачи Гурса, так 
как условие ( ) 0b t ≠  позволяет интерпретировать уравнение (1) как уравнение с доминирующей 
смешанной производной [2]. Это наблюдение дает возможность выбрать для обоснования раз-
решимости задачи удобный метод [3]. С другой стороны, можно применить к обоснованию 
разрешимости поставленной задачи и метод, традиционный для краевых задач. Обсуждению 
этих методов и будет посвящен доклад, в котором представлен и полученный результат.
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2. Основной результат

Покажем, что решение поставленной задачи существует и единственно. Первым шагом к 
обоснованию разрешимости задачи (1)–(4) является следующее утверждение.

Лемма. Если 1 2( ), , ( ), ( ), ( ), [0, ], [0, ], ( , ) 0T T T Ta C Q c f C Q b C Q K C Q C l C T K l tφ ψ∈ ∈ ∈ ∈ ∈ ∈ ≠  
и выполняются условия согласования

	 '

0 0 0
( ,0) ( ) (0), ( ,0) ( ) ( ,0) ( ) (0),

l l l

tK x x dx h K x x dx K x x dx hφ φ ψ= + =∫ ∫ ∫ 	 (5)

то задача (1)–(4) эквивалентна задаче для уравнения (1) с условиями (2), (3) и нелокальным 
условием второго рода

	 ( ) ( ) ( ) ( ) ( ), , , ,x xtta l t u l t b t u l t B u+ = 	 (6)
где Bu не содержит производных по пространственной переменной.

В рамках доказательства было получено следующее условие

[ ]''

0 0

1( , ) ( , ) ( ) ( , ) ( )
( , )

( ) ( , ) ( , ) ( , )[ l

x

l

x xtt tt x xa l t u l t b t u l t h t K d ufdx
K l t

K K a Kc u x K l t a l t l t+ − + −+ = − −∫ ∫
	 ]

0 0
(0, ) (0, ) (0, ) ( ) ( , ) ( , ) ( .) (0, ) ( , ) 20

l

x x tt x tt

l

xx tt t tK t a t u t b t K l t u l t b t K t u db K u xt K u dx− + − −− ∫ ∫ 	 (7)

Условие (7) является нелокальным интегральным условием второго рода, содержащим 
производные по пространственной переменной во внеинтегральном члене.

Также было показано обратное, что ( , )u x t  — решение уравнения (1), удовлетворяющее 
условиям (2), (3), (7) и выполняются условия согласования (5). 

Таким образом, эквивалентность задач была доказана, поэтому будем рассматривать во-
прос о существовании решения уравнения (1), удовлетворяющего условиям (2), (3), (7).

Не ограничивая общности, положим ( ) ( ) 0,x xφ ψ= =  а также выберем ( , )K x t  так, чтобы 
2 0,xxbK K− =  (0, ) 0.xK t =  Тогда условие (7) примет вид

	 ''

0

1( , ) ( , ) ( ) ( , ) ( )
( , )

l

x xtta l t u l t b t u l t h t K fdx
K l t

+ = − − ∫
	

0 0
( , ) ( , ) ( , ) ( , ) ( ) ( , ) ( , ) 2 ,

l l

x x tt t tH x t udx K l t a l t u l t b t K l t u l t K u dx− + + − ∫ ∫ 	 (8)

где ( , ) ( ) .tt x xH x t K K a Kc= + −
Будем также считать const,b =  0,b >  что не слишком ограничивает общность, но упроща-

ет выкладки.
Итак, рассмотрим задачу отыскания решения уравнения (1), удовлетворяющего условиям 

(2), (3), (8). Назовем ее задача 2.
Обозначим

1
2 2( ) : ( ), ( ),T T xt TW Q u u W Q u L Q= ∈ ∈

ˆ ( ) : ( ), ( , ) 0T TW Q v v W Q v x T= ∈ = .
Следуя процедуре [4] и предположив, что ( , )u x t  — классическое решение задачи, прихо-

дим к определению.
Определение. Обобщенным решением задачи 2 будем называть функцию ( ),Tu W Q∈  удов-

летворяющую условию ( ),0 0u x =  и тождеству

  
0 0 0 0 0 0

( ) ( , ) ( , ) ( , ) ( , ) ( , )
T l T T T l

t t x x xt xt xtt xu v au v bu v cuv dxdt v l t bu l t dt v l t a l t u l t f vdxdt− + − + − − =∫ ∫ ∫ ∫ ∫ ∫ 	(9)

для всех ˆ ( ).Tv W Q∈
Из (9) с учетом (8) получим:

0 0 0

1( ) ( , ) [ ( , ) ( , ) ( , )
( , )

T l T

t t x x xt xt xu v au v bu v cuv dxdt v l t K l t a l t u l t
K l t

− + − + − −∫ ∫ ∫
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0 0
2 ( , ) ]

l l

t tK u dx H x t udx dt− + +∫ ∫

	
''

0 0 0 0 0

( , ) ( , )( ( , ) ) ( , ) [ ( ) ] .
( , ) ( , )

T T l T lx
t t

K l t v l tv l t u l t dt f vdxdt h t K fdx dt
K l t K l t

+ = + −∫ ∫ ∫ ∫ ∫ 	 (10)
Теорема. Если 1( ),Ta C Q∈  ( ),Tc C Q∈  2 ( ),TK C Q∈  2[0, ],h C T∈  ( , ) 0,K l t ≠  ( , ) ( , ) 0,xK l t K l t >  

то существует единственное обобщенное решение задачи 2.
Сначала была доказана единственность решения из предположения, что существует два раз-

личных решения задачи 2 1( , )u l t  и 2 ( , ).u l t  Тогда их разность должна удовлетворять тождеству

	
0 0 0

1( ) ( , ) ( , ) ( , ) ( , )
( , )

[T l T

t t x x xt xt xu v au v bu v cuv dxdt v l t K l t a l t u l t
K l t

− + − + − −∫ ∫ ∫

	
0 0 0

( , )2 ( , ) ( , ) ( , ) 0,
( , )

] ( )l l T x
t t t t

K l tK u dx H x t udx dt v l t u l t dt
K l t

− + + =∫ ∫ ∫ 	 (11)

и ( ,0) 0.u x =
С помощью ряда преобразований, применения оценок (в том числе с помощью неравенств 

Коши и Коши — Буняковского) и, следуя известной процедуре [5], мы убедились в том, что
( , ) 0u x t =  в ,TQ  что и доказывает невозможность существования более одного решения задачи 2.

Существование решения было доказано с помощью поиска приближенных решений зада-
чи 2 в виде

	
1

( , ) ( ) ( ),
m

m
km k

k
u x t c t w x

=

=∑
где 2( ) [0, ]kw x C l∈  линейно независимы, образуют полную систему в 1

2 (0, )W l  из соотношений

0 0 0

1( ) ( ) [ ( , ) ( , ) ( , ) 2 ]
( , )

l l lm m m m m m m
tt i x i xtt i i i x t tu w au w bu w cu w dx w l K l t a l t u l t K u dx Hu dx

K l t
′ ′+ + + − − + +∫ ∫ ∫

	 ''

0 0

1( , ) ( , ) ( ) ( ) ( )
( , )

( )l lm
x tt i ibK l t u l t f w x dx w l h t K fdx

K l t
+ = + −∫ ∫ .	 (12)

Равенство (12) представляет собой систему обыкновенных дифференциальных уравнений 
относительно ( ):kmc t

	
1 1 1

( ) ( ),
m m m

ki km ki km ki km i
k k k

A c B c t D c g t
= = =

′′ ′+ + =∑ ∑ ∑ 	 (13)

Добавив к (13) начальное условие (0) (0) 0,km kmc c′= =  получим задачу Коши. Далее, рассма-
тривая квадратичную форму, мы показали, что определитель матрицы 0kiA >  для любого .m  
Приходим к тому, что Условия теоремы и выбор { ( )}kw x  гарантируют, что 0.kiA >  Учитывая 
условия теоремы можно утверждать, что последовательность приближенных решений по-
строена. Применяя ту же технику, что и при доказательстве единственности, нетрудно полу-
чить оценку ,mu P≤  следствием которой является возможность выделить слабосходящуюся 
в ( )TW Q  подпоследовательность. На завершающем этапе доказательства убеждаемся в том, 
что предел выделенной подпоследовательности и есть искомое решение, переходя к пределу и 
руководствуясь рассуждениями в [4]. Таким образом, теорема полностью доказана.

Заключение

Таким образом, была поставлена задача с нелокальным интегральным условием первого 
рода для уравнения четвертого порядка с кратными характеристиками, получено обобщен-
ное решение задачи. Получены необходимые оценки и проведены преобразования для дока-
зательства разрешимости поставленной задачи. 
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К ИССЛЕДОВАНИЮ ВЗАИМНОЙ СВЯЗИ КРИВИЗНЫ КРИВОЙ 
С КРИВИЗНОЙ ЕЕ ЭВОЛЮТЫ

Московский авиационный институт

С. Б. Богданова, С. О. Гладков

Аннотация. В работе изучается связь кривизны кривой с кривизной ее эволюты. Предло-
жен способ нахождения соответствующих точек, кривизны которых находятся в заданном 
соотношении. Результат проанализирован на конкретных примерах циклоиды и эллипса.
Ключевые слова: кривизна кривой, эволюта, эвольвента, циклоида, эллипс, астроида, 
численное решение.

Введение

Известно, что эволютой заданной кривой (эвольвенты) называется геометрическое место 
точек центров кривизны эвольвенты [1–4]. Уравнение эволюты заданной кривой ( ),x x t=  

( )y y t=  может быть записано в виде [1–4]:

	

( )

( )

2 2

2 2

,

.

e

e

y x y
x x

x y x y

x x y
y y

x y x y

 ′ ′ ′+
 = −

′ ′′ ′′ ′−


′ ′ ′+
= + ′ ′′ ′′ ′−

Отсюда следует, например, что (см. [1-4]):
1. Эволютой циклоиды ( sin ),x a t t= −  (1 cos )y a t= −  служит циклоида ( sin ),ex a t t= +  

(1 cos ).ey a t= − −
2. Эволюта эллипса cos ,x a t=  siny a t=  это астроида 

2 2
3cos ,e

a bx t
a
−

=  
2 2

3sine
b ay t

b
−

=  
(рис. 2). 

3. Эволютой параболы 2 2y px=  является полукубическая парабола ( )32 8 ,
27e ey x p

p
= −  где 

( )
3
22

,e

x
y

p
= −  3 .ex x p= +

Также хорошо известны свойства эволюты, связанные с поведением своей эволюты [1–4], 
а именно:

1. Касательная к эволюте является нормалью к данной кривой. 
2. Если на некотором участке кривой радиус кривизны изменяется монотонно, то абсолют-

ное значение приращения длины дуги эволюты равно соответствующему абсолютному прира-
щению радиуса кривизны данной кривой, .eds dR=

В настоящей работе мы покажем, что кривизны кривой и ее эволюты тесно взаимосвязаны 
между собой. И далее найдем аналитическое выражение для этой взаимосвязи, позволяющее, на-
пример, находить соответствующие точки с одинаковой или любой наперед заданной кривизной.

1. Вывод основных соотношений

В начале определим полезное понятие соответствующих точек на кривой и ее эволюте: точ-
ку T  кривой и центр кривизны кривой ,eT  лежащий на эволюте, будем считать соответствую-
щими (рис. 1). 
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Очевидно, что 
( )

3
2 21

,e

y
TT R

y

′+
= =

′′
 где ( )y y x=  — уравнение заданной кривой. По опреде-

лению кривизны ,dK ds
α=  ,e

e
e

dK ds
α=  где edα  и dα  дифференциалы углов касательной, 

eds  и ds  дифференциалы длин дуг эволюты и ее эвольвенты соответственно. Из приведенных 
выше свойств и рис. 1 следует, что ,2e

πα α= −  т. е. .ed dα α=  Поэтому отношение кривизны 

эвольвенты к кривизне ее эволюты подчиняется условию .e

e

dsK
K ds

=  Рассмотрим случай, ког-

да кривая задана в декартовых координатах ( ).y y x=  Тогда последнее равенство можно пере-
писать в явном виде:

	
2

2

1
.

1
e ee

e

y dxdsK
K ds y dx

′+
= =

′+
	 (1)

Из приведенного выше равенства eds dR=  следует, что 21 ,e ey dx R dx′ ′+ =  откуда 

Рис. 1. Астроида 321cos ,
5

x t=  321sin
2

y t= −  является эволютой эллипса 5cos ,x t=  2sin .y t=  

Отрезок eTT  равен радиусу кривизны эллипса в точке .T  Точка эллипса T  и точка астроиды 
eT  соответствуют друг другу



59

	
2

.
1

e

e

dx R
dx y

′
=

′+
	 (2)

Подcтавляя соотношение (2) в равенство (1), получим:

	
2

.
1e

K R
K y

′
=

′+
	 (3)

Аналогичные рассуждения приведут к соответствующим соотношениям для кривых, за-
данных параметрически или в полярных координатах:

	
2 2

,
e

K R
K x y

=
+



 

 
2 2

.
e

RK
K r r

ϕ

ϕ

′
=

′+
	 (4)

Формулы (3) и (4) позволяют сравнить кривизны в соответствующих точках кривой и ее 
эволюты, не обращаясь непосредственно к уравнению последней.

3. Анализ полученных результатов

3.1. Циклоида и ее эволюта

Абсолютная величина радиуса кривизны циклоиды, исходя из ее параметрического урав-
нения ( sin ),x a t t= −  (1 cos )y a t= −  есть 4 sin .

2
tR a=  Значит, согласно формуле (4), отноше-

ние кривизны циклоиды к кривизне ее эволюты ( sin ),ex a t t= +  (1 cos )ey a t= − −  будет

	 ctg .
2e

K t
K

= 	 (5)

Очевидным следствием равенства (5) является тот факт, что конкретные значения параме-
тра ,

2
t kπ π= +  k Z∈  задают те пары соответствующих точек на этих циклоидах, в которых их 

кривизны равны, причем 1 .
2 2

K
a

=  Рис. 2 иллюстрирует сказанное, где 2 2.eTT R a= =

Рис. 2. Эволюта циклоиды выделена пунктиром. В построении учтено, что 1a =
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3.2 Эллипс и его эволюта

Пример с эллипсом 
cos ,
sin

x a t
y b t
=

 =
, кривизна которого равна 3

2 2 2 2 2

,
( sin cos )

abK
a t b t

=
+

 и его 

эволютой, уравнение которой представляет собой астроиду 
2 2

3cos ,e
a bx t

a
−

=
2 2

3sin ,e
b ay t

b
−

=  
менее тривиален:

	
( )

( )
2 2

2 2 2 2

3 sin 2
.

2 sin cose

ab a b tK
K a t b t

−
=

+
	 (6)

Нахождение пары соответствующих точек с одинаковой кривизной на эллипсе и его астро-
иде требует решения уравнения

	 ( ) ( )2 2 2 2 2 22 sin cos 3 sin 2 ,a t b t ab a b t+ = − 	 (7)

сама возможность решения которого существенно зависит от геометрических параметров эл-
липса a  и .b

При этом принципиально важным является выполнение условия 

	
( )2 2 2 2

2 2

2 sin cos
sin 2 1,

3

a t b t
t

ab a b

+
= ≤

−

из которого следует, что соотношения между a  и b  должны быть такими:

	
( )

( )

2 2 2

2 2

2 2 2

2 2

3 2
0,

2

3 2
1,

2

ab a b b
 a > b,

a b

ab a b b
a < b.

a b

 − −
 ≥

−


− −
≤ −

åñëè

åñëè

	 (8)

Эллипс, изображенный на рис. 1, с параметрами 5a =  и 2b =  удовлетворяет верхнему ус-
ловию (8), т. е. уравнение (7) разрешимо. А это значит, что на этом эллипсе и его эволюте есть 
пара (пары) соответствующих точек с одинаковой кривизной. Действительно, численное ре-
шение уравнения (7) после подстановки в него значений 5a =  и 2b =  приводится к виду 

	 2 225sin 4cos 315sin 2 .t t t+ = 	 (9)
Результат решения проиллюстрирован на рис. 3.

Рис. 3. На эллипсе 5cosx t= , 2siny t=  отмечены точки, соответствующие решению уравнения (9)
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Hа рис. 4 хорошо видно, что в соответствующих точках K  и ,eK  N  и eN  эллипс и его эволюта 
искривлены совершенно одинаково, что естественным образом следует из формул (6), (7) и (9).

Заключение

В заключение работы отметим два основных момента.
1. Приводится  сравнение кривизны кривой с кривизной ее эволюты в соответствующих точках. 
2. Найдены пары соответствующих точек с равными кривизнами на циклоиде, эллипсе и 

их эволютах.
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Аннотация. В настоящей работе рассматриваются задачи динамики и предельного по-
ведения репликаторных (нелинейных) систем дифференциальных уравнений в частных 
производных. Основное внимание уделяется влиянию пространственного фактора на по-
ведение распределённых систем, описываемых уравнениями с частными производными. 
Рассматривается общая постановка задачи с граничными условиями Неймана, Дирихле 
и Робина, а также анализируются пространственно-однородные и неоднородные стацио-
нарные положения равновесия. Устойчивость этих положений изучается с использовани-
ем спектрального анализа и энергетического метода, включая обобщение на различные 
типы граничных условий. В работе показано, что при достаточно больших коэффициен-
тах диффузии решения стремятся к стационарному режиму, причём условия Дирихле и 
Робина усиливают устойчивость по сравнению с условиями Неймана. Приводятся при-
меры, такие как уравнение Фишера — Колмогорова и двухкомпонентная система, иллю-
стрирующие применение предложенных методов. Результаты подчёркивают важность 
учёта граничных условий и диффузии для предсказания долгосрочного поведения систем 
«реакция-диффузия».
Ключевые слова: реакция-диффузия, нелинейные системы, частные производные, про-
странственная устойчивость, граничные условия, условия Неймана, условия Дирихле, 
условия Робина, стационарное равновесие, спектральный анализ, энергетический ме-
тод, пространство Соболева, уравнение Фишера — Колмогорова, диффузионные потоки, 
асимптотическая устойчивость.

Введение

Рассмотрим общую постановку такой задачи.
Пусть в ограниченной области mΩ⊂   задана система дифференциальных уравнений 

вида:

	 ( ) ( ), , 0,ij
i j

u ua x f u x t
t x x

 ∂ ∂ ∂
= ∑ + ∈Ω >  ∂ ∂ ∂ 

	 (1)

где 1( ,..., ) ,T
nu u u=  1( ,..., ) ,T

nf f f=  1( ,..., ).mx x x=
Здесь ( ) ( ( )),ijA x a x=  , 1,..., ,i j m=  является симметрической матрицей, имеющей веще-

ственные положительные собственные значения.
В начальный момент времени заданы начальные условия:
	 0( ,0) ( ), ,u x u x x= ∈Ω 	 (2)

а на границе ∂Ω области Ω заданы однородные граничные условия 2-го рода (условия Неймана):

	 0, , 0,u x t
ν
∂

= ∈∂Ω >
∂

	 (3)

где ν∂  — единичная внешняя нормаль к границе .∂Ω
Система (1)–(3) является замкнутой, т. к. потоки реагирующих компонент через границу 

области равны нулю. В литературе такие системы получили название систем типа «реакция- 
диффузия».

Здесь вектор-функция ( )f u  определяет реакцию компонентов, которая описывается дина-
мической системой:
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	 ( ).du f u
dt

=

Матрица коэффициентов ( )A x  описывает диффузионные потоки, возникающие в области .Ω
В классическом случае рассматриваются диагональные матрицы ( ).A x  В этом случае не 

учитываются так называемые кросс-диффузионные потоки, когда диффузионный поток од-
ной из компонент системы оказывает влияние на динамику другой компоненты.

В этой работе мы будем далее рассматривать слабые решения [2] задачи (1)–(3), которые 
являются элементами (при каждом фиксированном 0t  ) пространства Соболева 1,2 ( )W Ω  с 
нормой

	 ( ) ( )( )1,2

1/2
2 2

W
u u u dx

Ω
= ∫ + ∇

и при любых 0t   представляют гладкие функции по переменной .t
Класс таких функций, удовлетворяющих перечисленным выше требованиям, будем обо-

значать далее как .V

1. Стационарные положения равновесия

Определение 1. Вектор-функция ( )u x V∈  такая, что:

	 ( ) ( ) 0,ij
i j

ua x f u x
x x
 ∂ ∂

∑ + = ∈Ω  ∂ ∂ 
	 (4)

называется стационарным положением равновесия системы (1)–(3).
Если положение равновесия ( ) const,u x ≠  то его называют пространственно неоднород-

ным. Задача об отыскании пространственно неоднородных равновесий весьма сложна. Будем 
предполагать, что ( )u x  — пространственно-однородное положение равновесия, т. е. суще-
ствует решение задачи:

	 ( ) 0.f u = 	 (5)
Исследование таких положений равновесия дает информацию о предельном положении 

системы (1)–(3) при .t →∞  Как и в случае динамических систем, введем аналог понятия устой-
чивости по Ляпунову стационарных положений равновесия.

Определение 2. Положение равновесия ( )u x  системы (1)–(3) называется устойчивым по 
Ляпунову, если для 0ε∀ >  существует 0δ >  такое, что для 0u V∈  решений ( , )u t x  системы 
(1)–(3) с начальными данными 0u  такими, что 0 ,Vu u δ− <  при всех 0,t ≥  ( ,.) .Vu t u ε− <  Если, 
кроме того, выполняется условие ( ,.) 0,Vu t u− →  при ,t →∞  то положение равновесия назы-
вается асимптотически устойчивым.

Пусть далее ( )u x  — пространственно-однородное положение равновесия системы (1)–(3).
Рассмотрим матрицу Якоби вектор-функции :f

	 ( ).fJ u
u
∂

=
∂

Исследование устойчивости положения равновесия можно осуществить с помощью анало-
га теоремы Ляпунова — Пуанкаре об устойчивости по первому приближению [4]. И оно тогда 
сводится к исследованию спектра следующей задачи на собственные значения:

	 ( ) ,ij
i j

a x J x
x x

φ φ λφ
 ∂ ∂

∑ + = ∈Ω  ∂ ∂ 
	  (6)

с граничными условиями

	 0, .xφ
ν
∂

= ∈∂Ω
∂
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Соответствующие собственные значения образуют неубывающую последовательность:
	 1 2 ...λ λ 
Если для всех собственных значений задачи (6) выполняется условие Re( ) 0,kλ < 1,2,...,k =  

то положение равновесия является асимптотически устойчивым. Точную формулировку этой 
теоремы можно найти в [5].

Рассмотрим линейное преобразование 1 ,v P φ−=  где P  — матрица такая, что ,TP JP == Λ  
TP  — транспонированная матрица.

С учетом этого преобразования спектральная задача (6) принимает вид:

	 ( ) , ,ij
i j

va x v v x
x x

λ
 ∂ ∂

∑ +Λ = ∈Ω  ∂ ∂ 
	 (7)

где 1diag( ,..., ).nγ γΛ =
Решение задачи (7) будем искать в виде:
	 ,( ) ( ), n

k k kv x c x cψ= ∑ ∈ 	 (8)
где ,kψ  1,2,...,k =  собственные функции следующей краевой задачи на собственные значения:

	 ( ) ,ij
i j

a x x
x x

ψ µψ
 ∂ ∂

∑ = − ∈Ω  ∂ ∂ 
	 (9)

с граничными условиями

	 0, .xψ
ν

∂
= ∈∂Ω

∂
Известно [3], что задача (9) имеет биортонормированную систему собственных функций 

,kψ  которые образуют полную систему в пространстве 2 ( ),L Ω  причем выполняется:
	 ( ) ( )2, , , 1, 2,...k l k l klL

dx k lψ ψ ψ ψ δ
Ω
= ∫ = = 	 (10)

где klδ  — символ Кронекера.
Соответствующие собственные значения образуют неубывающую последовательность 
	 1 20 ...µ µ=  
С учетом представления (8) исходная задача принимает вид:
	 ( ) .k k k k k k kc c cµ ψ ψ λ ψ∑ − +Λ = ∑
Если умножить это равенство скалярно в пространстве 2 ( )L Ω  на функции ,lψ  1 , 2,...,l =  и 

воспользоваться соотношением (10), то получим матричные равенства для векторов kc  в фор-
ме задач на собственные значения:

	 ( ) , 1, 2,...k k kI c c kµ λΛ − = = 	 (11)
Таким образом, задача об отыскании собственных значений континуальной системы (6) 

сводится к алгебраической задаче о собственных значениях счетной последовательности ма-
триц вида:

	 , , 1, 2,..., 1,...,k j j k k j nλ γ µ= − = = 	 (12)
Если для всех собственных значений задачи (11) выполняется условие:
	 ,Re( ) 0, 1,2,..., 1,..., ,k j k j nλ < = =

то пространственно-однородное положение равновесия u  системы (1)–(3) является устой-
чивым.

Если же хотя бы для одного значения ,k j  это условие не выполняется, то положение рав-
новесия неустойчиво.



65

2. Примеры

Рассмотрим несколько примеров применения сформулированных результатов к конкрет-
ным задачам.

2.1. Пример 1

Запишем уравнение Фишера — Колмогорова на интервале (0, )πΩ =  с однородными крае-
выми условиями Неймана:

	
2

2 (1 ), (0, ), 0u uD u u x t
t x

π∂ ∂
= + − ∈ >

∂ ∂
	 (13)

	 (0, ) ( , ) 0, 0.u ut t t
t t

π∂ ∂
= = >

∂ ∂
	 (14)

Это уравнение имеет два пространственно-однородных положения равновесия 0u =  и 
1.u =  Второе положение равновесия определяется собственными функциями и собственными 

значениями задачи (9):

	 ( ) 22( ) , , 0,1, 2,...k kx cos kx k D kψ µ
π

= = =

Равенство (12) принимает вид:
	 21 , 0,1, 2,...k k D kλ = − − =
Следовательно, положение равновесия 1u =  является асимптотически устойчивым.
В случае 0u =  из равенства (12) получим, что 21 ,k k Dλ = −  0,1,2,....k =  Таким образом, 

положение равновесия неустойчиво, т. к. 0 1 0.λ = >

2.2. Пример 2

Рассмотрим далее еще один пример системы типа «реакция-диффузия». Исследуем влия-
ние диффузии на поведение замкнутой системы «реакция-диффузия» общего вида при .t →∞  
Остановимся на случае 2.n =

Итак, рассмотрим систему вида:

	 1 2
1 1 1 1 2 2 2 2 1 2, ,      , ,      , 0,( ) ( )u ud u f u u d u f u u x t

t t
∂ ∂

= ∆ + = ∆ + ∈Ω >
∂ ∂

	 (15)

где 1 2 ,( , )Tu u u=  1 2 .( , )Tf f f=  Здесь 1d  и 2d  — коэффициенты диффузии, а ∆  — оператор Ла-
пласа.

Функции 1u  и 2u  удовлетворяют условиям Неймана (случай замкнутой системы):

	 1 2 0,     , 0u u x t
ν ν
∂ ∂

= = ∈∂Ω >
∂ ∂

	 (16)

на границе ∂Ω  ограниченной замкнутой области Ω  и однородным начальным условиям:
	 1 1,0 2 2,0,0 ( ),   )  ,0 (( ),  ( )   u x u x u x u x x= = ∈Ω 	 (17)
Для определенности будем предполагать, что область Ω  является квадратом: 
	 [0, ] [0, ].π πΩ = ⋅
Вектор-функция ( )f u  определяет реакцию компонентов системы (15)–(17), которая опи-

сывается динамической системой:

	 ( ).du f u
dt

=
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Матрица 1 2( ) diag( , )A x d d=  описывает диффузионные потоки, возникающие в области .Ω
Решения системы (15)–(17) будем рассматривать в пространстве Соболева 1,2 ( ).W Ω
Для исследования поведения решений системы (15)–(17) при t →∞  воспользуемся энерге-

тическим (вариационным) методом [1, 3, 5].
Для этого введем в рассмотрение (вариационную) функцию времени:

	 2 2
1 2

1( ) ( ) ,
2

E t u u dx= ∫ + 	 (18)

которая играет роль энергии системы.
Вычислим производную функции (18) с учетом (15)–(17). Получим, что:

	 ( ) ( ) ( )( )2 2
1 1 2 2 1 1 1 2 2 2 1 2, ,dE d u d u dx u f u u u f u u dx

dt
= − ∫ ∇ + ∇ + ∫ +  	 (19)

Формулу (19) можно представить в виде:

	 1 2 ,dE I I
dt

= +

где
	 ( )2 2

1 1 1 2 2 ,I d u d u dx= − ∫ ∇ + ∇ 	 (20)

	 ( ) ( )( )2 1 1 1 2 2 2 1 2, , .I u f u u u f u u dx= ∫ + 	 (21)
Введем обозначения:

	 ( ) 2
1 2

1 2
1 2

min , ,     sup .
u

f fd d
u u

α β
∈

∂ ∂
= = +

∂ ∂ 	 (22)

Теорема 1. Если ,α β>  то 0dE
dt

  и поэтому все частные производные 1 ,
i

u
x
∂
∂

 2 ,
i

u
x

∂
∂

 1,2,i =  

стремятся к нулю при ,t →∞  а само решение выходит на константу (стационарный режим).
Для доказательства теоремы достаточно рассмотреть интеграл (20). Здесь после интегри-

рования по частям с учетом краевых условий, перепишем (20) в виде:

	 ( )2 2
1 1 1 2 2 .I d u d u dx= − ∫ ∇ + ∇

Тогда, учитывая обозначения (22), в силу неравенства Коши — Буняковского имеем:
	 2 2

2 1 2( ) .I u u dxβ ∫ + 	 (23)
Так как 1 2min( , ),d dα =  то для первого из интегралов в правой части последнего неравен-

ства справедливо неравенство Фридрихса, а потому справедливы неравенства:

	 2 2 ,    1, 2,i F iu dx C u dx i∫ ∇ ∫ = 	 (24)
где FC  — константа Фридрихса.

Используя (23) и (24), получим следующую оценку:

	 2 2 2 2
1 2 1 2( ) ( ) .F

dE C u u dx u u dx
dt

α β− ∫ + + ∫ +

Из последнего неравенства заключаем, что если ,α β>  то 0.dE
dt



Поскольку ( ) 0,E t   то ( ) 0E t E∞→   и поэтому 2 2
1 2( ) 0u u dx∫ + →  при .t →∞

Применяя аналогичные рассуждения в отношении второго интеграла (21), получим соот-
ветственно соотношение 2 0,iu dx∫ ∇ →  а, следовательно, и 0,i

j

u
x
∂

→
∂

 1,2,i =  1,2.j =

Поэтому очевидно, что все частные производные 1 ,
i

u
x
∂
∂

 2 ,
i

u
x

∂
∂

 1,2,i =  стремятся к нулю при 

,t →∞  а само решение выходит на стационар. Теорема доказана.
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3. Обобщение на граничные условия первого и третьего рода

В данном разделе мы обобщаем полученные результаты на граничные условия первого 
рода (условия Дирихле) и третьего рода (условия Робина), исследуя их влияние на динамику и 
устойчивость системы (1)–(3).

3.1. Граничные условия первого рода (Дирихле)

Граничные условия первого рода задаются как
	 ( , ) ( ), , 0u x t g x x t= ∈∂Ω > 	 (25)

где ( )g x  — заданная функция на границе .∂Ω  Для простоты предположим, что ( ) 0,g x =  что 
соответствует однородным условиям Дирихле:

	 ( , ) 0, , 0,u x t x t= ∈∂Ω > 	 (26)
Эти условия моделируют ситуацию, когда значения компонент u  фиксированы на границе.
Для исследования устойчивости пространственно-однородного положения равновесия ,u  

удовлетворяющего ( ) 0,f u =  рассмотрим спектральную задачу, аналогичную (6), но с гранич-
ными условиями Дирихле:

	 ( ) ,ij
i j

a x J x
x x

φ φ λφ
 ∂ ∂

∑ + = ∈Ω  ∂ ∂ 
	 (27)

	 0, ,xφ = ∈∂Ω 	 (28)

где ( )fJ u
u
∂

=
∂

 — матрица Якоби. Собственные функции kψ  краевой задачи

	 ( ) , ,  0,ij
i j

a x x x
x x

ψ µψ ψ
 ∂ ∂

∑ = − ∈Ω = ∈∂Ω  ∂ ∂ 
	 (29)

образуют биортонормированную систему в 2 ( ),L Ω  а собственные значения kµ  удовлетворяют 
1 20 ...,µ µ<    в отличие от случая Неймана, где 1 0.µ =  Собственные значения системы 

определяются как
	 , , 1, 2,..., 1,..., ,k j j k k j nλ γ µ= − = = 	 (30)

где jγ  — собственные значения матрицы ,Λ  полученной из J  путем преобразования .TP JP = Λ  
Положение равновесия асимптотически устойчиво, если ,Re( ) 0k jλ <  для всех , .k j  Поскольку 

0,kµ >  условия Дирихле могут способствовать большей устойчивости по сравнению с услови-
ями Неймана, так как kµ−  вносит отрицательный вклад в , .k jλ

Для анализа поведения решений при t →∞  применим энергетический метод, аналогич-
ный разделу 2.2. Энергия системы определяется как в (18). Однако при вычислении производ-
ной dE

dt
 граничные члены исчезают из-за 0u =  на ,∂Ω  и формула (19) остается справедливой. 

Неравенство Фридрихса для условий Дирихле дает более сильную оценку:

	 2 2 , 1, 2,i F iu dx C u dx i′∫ ∇ ∫ = 	 (31)
где F FC C′ >  за счет отсутствия нулевого собственного значения. Таким образом, если ,α β>  

как определено в (22), то 0,dE
dt

  и решение стремится к стационарному режиму, причем ус-
ловия Дирихле усиливают сходимость к константе.
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3.2. Граничные условия третьего рода (Робина)

Граничные условия третьего рода задаются как

	 0, , 0,u u x tσ
ν
∂

+ = ∈∂Ω >
∂

	 (32)

где 0σ   — параметр, описывающий баланс между потоком и значением функции на грани-
це. Эти условия моделируют частичную проницаемость границы, где 0σ =  соответствует ус-
ловиям Неймана, а σ →∞  приближается к условиям Дирихле.

В таком случае спектральная задача для устойчивости принимает вид:

	 ( ) ,ij
i j

a x J x
x x

φ φ λφ
 ∂ ∂

∑ + = ∈Ω  ∂ ∂ 
	 (33)

	 0, .xφ φ
ν σ
∂

= ∈∂Ω
∂ +

	 (34)

Краевая задача для собственных функций становится

	 ( ) , ,     0, .ij
i j

a x x x
x x

ψ ψµψ σψ
ν

 ∂ ∂ ∂
∑ = − ∈Ω + = ∈∂Ω  ∂ ∂ ∂ 

	 (35)

Собственные значения kµ  удовлетворяют 1 20 ...,µ µ<    где 1 0µ =  только при 0.σ =  
При 0σ >  все 0,kµ >  что усиливает отрицательный вклад в , .k j j kλ γ µ= −  Устойчивость опре-
деляется аналогично: положение равновесия асимптотически устойчиво, если ,Re( ) 0k jλ <  для 
всех , .k j  Условия Робина с 0σ >  способствуют устойчивости, особенно при больших ,σ  при-
ближая поведение системы к случаю Дирихле.

При вычислении dE
dt

 для условий Робина граничные члены дают дополнительный вклад:

	 ( ) ( ) ( )2 2 2 2
1 1 2 2 1 2 1 1 2 2 .dE d u d u dx u u dS u f u f dx

dt
σ= − ∫ ∇ + ∇ − ∫ + + ∫ + 	 (36)

Интеграл по границе 2 2
1 2( ) 0u u dSσ∫ +   усиливает затухание энергии, так как 0.σ   Ис-

пользуя неравенство Фридрихса, адаптированное для условий Робина, получаем, что если 
,α β>  то 0,dE

dt
  и решение стремится к стационарному режиму. При 0σ >  дополнительный 

граничный член ускоряет сходимость, делая условия Робина промежуточными между Нейма-
на и Дирихле.

4. Замечание

	Очевидно, что полученный результат распространяется на случай системы (1)–(3). Однако 
этот результат не всегда удается использовать в конкретных случаях, так как вычисление по-
стоянной β  зависит от априорных знаний о решении системы (15)–(17) (или системы (1)–(3)) 
и его производных.

5. Вывод

Предложенный метод [3,6] позволяет сохранять устойчивость при достаточно больших 
коэффициентах диффузии. Такого вида устойчивость принято называть пространствен-
но-диффузионной устойчивостью, даже в случае неустойчивой системы (при t →∞).

Граничные условия первого и третьего рода существенно влияют на поведение систем «ре-
акция-диффузия» [7, 8]. Условия Дирихле, фиксируя нулевые значения на границе, усиливают 
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устойчивость и сходимость к стационарному режиму за счет положительных собственных 
значений .kµ  Условия Робина, в зависимости от параметра ,σ  обеспечивают гибкий переход 
между условиями Неймана и Дирихле, причем при 0σ >  они также способствуют устойчиво-
сти. Энергетический метод подтверждает, что при достаточно больших коэффициентах диф-
фузии ( )α β>  решения стремятся к пространственно-однородному стационарному состоя-
нию, причем условия Дирихле и Робина с 0σ >  ускоряют этот процесс по сравнению с 
условиями Неймана.
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J-ПРЕОБРАЗОВАНИЯ БЕССЕЛЯ δ-РАСПРЕДЕЛЕНИЯ ДИРАКА — КИПРИЯНОВА

Елецкий государственный университет им. И. А. Бунина

Ю. Н. Булатов

Аннотация. Для анализа задач, содержащих сингулярный дифференциальный опера-
тор Бесселя с отрицательным параметром, в работе приводится интегральное преобра-
зование. Его ядро задаётся одним из линейно независимых решений соответствующего 
сингулярного уравнения Бесселя. Введено определение δ-распределения Дирака — Ки-
приянова и получена формула J-преобразования Бесселя δ-распределения Дирака — Ки-
приянова.
Ключевые слова: сингулярный дифференциальный оператор Бесселя, преобразование 
Фурье — Бесселя, δ-функция Дирака.

Введение

Введём следующие обозначения пространств:
	 1{ ( , , )} , { : 0} , { : 0} , 1,  ,n n n

n i ix x x x x x x i n+ += = … = > = =   
и операторов:

	
2

12
1

, , ( , , ), 0 1, 1,  .
i i

n
i

B n i
i i i i

B B i n
x x xγ γ γ

γ γ γ γ γ
− − −

=

−∂ ∂
∆ = = + = … < < =

∂ ∂∑
В начале 80-х годов XX века И. А. Киприянов инициировал исследование задач для диффе-

ренциальных уравнений с оператором Бесселя с отрицательным параметром. Развитием этого 
направления занялся его ученик В. В. Катрахов, в основе подхода которого лежало соотноше-
ние Вайнштейна — Дарбу, связывающее операторы для положительных и отрицательных па-
раметров. Хотя область применения данного соотношения освещена в книге [1], упомянутые 
исследования по этой теме не были опубликованы, так как возникшие трудности требовали 
введения принципиально нового математического аппарата по сравнению с известным в то 
время. Такой специальный аппарат, по всей видимости, и был создан в [2–4].

Приведём некоторые известные понятия теории сингулярных дифференциальных уравне-
ний. Известно [5], что оператор Бесселя ограниченно действует на гладкую чётную функцию:

	 00 0
lim ( ) lim (1 ) ( ) .|i

i i i i i i
i i

x
x x i i x x xx x

i

u
B u x u u x

xγ γ γ± =→ →
= ± = ± 	 (1)

Функцию, определенную в полупространстве 0,ix >  будем называть четной в смысле сле-
дующего определения (см. [6, с. 21]).

Определение 1. Функцию, заданную на полуоси [0, )iOx = +∞  будем называть четной по 
аргументу ,ix  если возможно её четное продолжение на всю ось ix  с сохранением класса сво-
ей принадлежности.

Класс   раз непрерывно дифференцируемых функций, заданных в n-полупространстве 
,n

+  удовлетворяющих условию четности по каждой координате аргумента, будем обозначать 
( ),evC Ω  .n

+Ω ⊆ 

1. Основы гармонического анализа с оператором B γ−

Весовая билинейная форма в ,n
+  отвечающая параметрам ( 1,0),iγ− ∈ −  вводится следую-

щим выражением:
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1

( , ) ( ) ( ) , , ( 1,0).i

n

n

i i i
i

u v u x v x x dx x dx x dxγγ γ
γ γ

+

−− −
−

=

= = − ∈ −∏∫


	 (2)

Определение (2) порождает весовое функциональное пространство 

	 { }
2

2 2 ( ) : ( , ) , 1.n
iL

L L u u u uγ
γ γ

γ γ−
− −

+ −= = = < ∞ − > − ＼ ＼

В качестве основного пространства функций рассматриваем подпространство простран-
ства Шварца ( ),n

ev evS S +=   состоящее из четных основных функций. Следует обратить внима-
ние на требование четности функций, определенных в евклидовом n-полупространстве .n

+  
Пространство распределений обозначается , .evS γ′

1.1. -функции Бесселя. Пусть 1( , , ),nγ γ γ− = − … −  ( 1,0)iγ− ∈ −  и ( ) / 2.1i iµ γ= +  Линейно 
независимые решения сингулярных дифференциальных уравнений Бесселя 

	
2

20, , 1, ,
i i

i

i i i

B u u B i n
x x xγ γ

γ
− −

∂ ∂
+ = = − =

∂ ∂
имеют следующий вид: 
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µ µ

µ µ
µ µ
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− Γ +
= = Γ +

Γ + +∑
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( 1)  1
( ) (1 )2 ( ),

! 1 2
i i

i i

mm
i i

i i i i
m i

xx x J x
m m

µ µ
µ µ

µ
µ

µ

∞
−

− −
=

− Γ −  = = Γ − Γ + −  
∑

где 
i

J µ±  — функции Бесселя первого рода. Можно отметить, что -функции Бесселя удовлет-
воряют условиям

	 2 2

0
( ) ( ), 0; lim ( ) 1; (0) 1.i

i i i x
x O x x x xµ µ

µ µ µ
−

−→
= → = =  

Решения 
iµ−

  востребованы в спектральной теории сингулярных дифференциальных 
уравнений, что показано в [7]. Для цели этой работы более естественным оказалось использо-
вать только -функции Бесселя положительного параметра .µ  

1.2. Обобщенный -псевдосдвиг и -сдвиг. В [8] по аналогии с известной теоремой сложе-
ния Б. М. Левитана [2] получено равенство

	 1 1( ) ( ) ( ), ,1  .
2 2

y
x x x yµ µ µ

γµ +  = = ∈ 
 

   

Многомерный интегральный оператор  назван в [3] псевдосдвигом и определен формулой

	 ( )
1

1

110 0

3
( )2( , ) , sin ,

21 ( )
2 2

i
i

i
i

i
n

y i i
x i i

i i
i i

x yf x t f x y t d
x y

π π γα γ
α

γ

γ

α α
γ

+
+

+=

+ Γ    = … →  +    →Γ Γ   
   

∏∫ ∫

где «сдвинутый» аргумент ( )x y
α
→  функции f  имеет следующий вид

	 2 2( ) ( , , ) ( , 2 cos , ), 1, .i i i i i i ix y x y x y x y i n
α α

α→ = … → … = … + − … =
Приведенная конструкция не может быть сдвигом, т. к. не выполнено главное условие: ну-

левой шаг сдвига не меняет функции.
Основные свойства многомерного -псевдосдвига определены следующими равенствами: 
	 ( ) ( ) ( ) ( ) ( ) ( )* , , , * * * .

i i i

y y
x xu v u v u v B u v B u v u B vγ γ γγ γγ γ γ γ− − −− −− − − −

= = = =  	 (3)

Первое равенство в (3) есть определение обобщенной -свертки функций, второе — свой-
ство эрмитовости -псевдосдвига в весовой линейной формы (2), следующие два равенства 
есть следствие эрмитовости -псевдосдвига и В-дифференцирования -свертки. Отметим 
также коммутируемость -псевдосдвига с 

, xB γ−
∆ -оператором: 
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, ,

( ) ( );
x x

y y
B Bu x u x

γ γ− −
∆ = ∆ 

Востребованным в наших исследованиях оказался следующий интегральный оператор
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∏∫ ∫

Нетрудно проверить, что нулевой шаг сдвига не меняет функцию 

	
*

0 ( , ) ( , ).x f x t f x t= 	 (4)
Поэтому эта конструкция уже не противоречит природе того, что имело право называться 

«сдвигом». Более того, в работе [10] доказано, что данная конструкция сдвига удовлетворяет 
определению класса обобщенных сдвигов.

1.3. Преобразования Бесселя, порожденные µ  решениями дифференциального уравне-
ния Бесселя. Пусть ,x  ,nξ +∈  ( 1,0)iγ− ∈ − . Четным прямым и четным обратным  -преобра-
зованиями Бесселя будем называть следующие выражения:
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Для 2 ,( )f x L γ−∈  0 1iγ< <  эти преобразования обратимы (доказательство см. [9]): 
	 1 ˆ[ ]( ) ( ).f x f x− =

2. γδ− -распределение Дирака–Киприянова

Хорошо известно, что сингулярный функционал, называемый δ -функцией Дирака, приме-
ненный к радиальной функции (| |),xϕ ϕ=  принимает форму весового сингулярного распре-
деления (2) с целочисленным параметром 1nγ = − :

	 ( ) 1, , ( ) ( ) (0), | |, 1,( )B r S n r x n
γ γδ ϕ δ ϕ ϕ γ= = = = −

где 1| ( ) |S n  — площадь единичной сферы с центром в начале координат в евклидовом про-
странстве точек .n

И. А. Киприянов ввел понятие весовой δ -функции [6, c. 12] равенством ( , ) (0)γ γδ ϕ ϕ=  в 
пространстве распределений , ,evS γ′  регулярные представители которых определены функцио-
налом ( , )γϕ⋅  на основе весовой билинейной формы (2) с 1( , , ),nγ γ γ= …  где 0iγ >  и уже не 
обязательно целое число, а площадь нагруженной весами сферы вычисляется по формуле
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При выполнении условия 1iγ > −  формула (5) применена для определения γδ− -распределе-
ния с носителем в произвольной точке евклидова n-полупространства .n

+  Необходимо вос-
пользоваться -псевдосдвигом. Присутствие в билинейной форме -псевдосдвига сразу ме-
няет вес этой формы, который становится равным первой степени переменной аргумента 
функций. 
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Дадим точное определение обобщенной γδ− -функции Дирака. Сначала отметим, что клас-
сический подход опирается на существование соответствующей ,γ εδ−  — δ -образной последо-
вательности, такой, что
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Такая последовательность существует, её примером может служить { }*
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Действительно. В этом случае, продолжая равенство (6), имеем
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Но здесь уже вместо псевдосдвига x
y  проявился 

*
x
y -сдвиг, принадлежащий классу обоб-

щенных сдвигов Б. М. Левитана. Теперь применим первую теорему о среднем и учитывая (4) и 
(7), получим
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будем называть γδ− -распределением Дирака в , .evS γ−′
Теорема 1. [  -Преобразования Бесселя γδ− -распределения Дирака.] Пусть ( 1) / 2,µ γ= +  

0 1.γ< <  В смысле распределений ,evS γ−′  имеет место равенство
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УДК 517.958

СЛАБАЯ РАЗРЕШИМОСТЬ ЗАДАЧИ О НАПРЯЖЕННО-ДЕФОРМИРОВАННОМ 
СОСТОЯНИИ СЛОИСТОЙ КОМПОЗИЦИОННОЙ СРЕДЫ

Санкт-Петербургский политехнический университет Петра Великого

И. В. Гусельникова

Аннотация. Рассматривается достаточно часто встречающаяся в промышленной
сфере сплошная среда, состоящая из совокупности слоев — слоистой однонаправлен-
ной композиционной среды (композитов), и физические процессы в слоях — процессы 
переноса, волновые процессы и изменение напряженно-деформированного состояния 
этой среды. Представлена математическая модель упругих деформаций элементов ком-
позиционной среды (краевая задача) в соболевском пространстве функций с носителем 
в слоистой области, формируется ей соответствующий дискретный аналог и устойчивая 
разностная схема, описывающая закономерности изменения приближений к точному 
решению краевой задачи, устанавливаются достаточные условия слабой разрешимости 
этой задачи.
Ключевые слова: слоистая область, деформация элементов композиционных материа-
лов, сходящаяся разностная схема, слабая разрешимость краевой задачи.

Введение

Под сетеподобными процессами понимается любое эволюционное изменение физической 
среды: перенос тепла, волновые явления, гидродинамические изменения, имеющие носитель 
со сложной реологией структуры, т.е. в виде сетей, сетеподобных конструкций и иных фи-
зических континуумов: теплопроводы, гидросистемы, антенные конструкции и пр. Методы 
математического моделирования наиболее типичных естественно-научных сетеподобых про-
цессов, а именно тепловых и волновых процессов (распространение теплоты в сетеподобных 
промышленных конструкциях, колебания в сетях), биологических процессов (метаболизм 
живого организма: граф кровеносной системы), экономических и диффузионных процессов 
в коммерческих сетях (порча товара, естественная утечка, реализация вне торгового прилав-
ка) были описаны ранее. В данном исследовании представлен анализ напряжённо-деформи-
рованного состояния слоистых композиционных материалов (композитов), представляющих 
собой набор слоев из однонаправленных композитов. Каждый слой может содержать длинные 
волокна (армирующие элементы), расположенные параллельно друг другу, и является однона-
правленным волокнистым композитом. При решении задач, связанных с анализом и описани-
ем состояний композитов, обычно используют количественные характеристики слоев, кото-
рые не являются функциями координат точек среды с тем, чтобы не решать соответствующие 
задачи для неоднородной среды. В данном исследовании представлен анализ напряженно-де-
формированного состояния упругой слоистой среды, слои которой характеризуются различ-
ными свойствами. Ставится и исследуется краевая задача о равновесии изотропного упругого 
слоистого тела при условии жесткого закрепления, т. е. задача об определении вектора упругих 
смещений, как решение системы дифференциальных уравнений теории упругости с соответ-
ствующими краевыми условиями. Для такой системы формируется соболевское пространство 
(пространство допустимых решений), элементы которого в местах примыкания слоев удов-
летворяют условиям, выражающие непрерывность среды и равновесие сил, действующих на 
нее. В рамках метода конечных разностей краевой задаче сопоставляется ее дискретный ана-
лог (разностная схема), устанавливаются достаточные условия, гарантирующие однозначную 
разрешимость и устойчивость этой схемы, что лежит в основе доказательства слабой разре-
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шимости краевой задачи. Рассуждения, представленные в работе, достаточно легко обобща-
ются на случай анизотропных сред.

1. Основные понятия и определения

Пусть область 3ℑ⊂   содержит подобласти ,jℑ  = 1,2,..., ,j N  которые, образуя слоеную 
структуру, взаимно попарно примыкают друг к другу, а значит, область ℑ  не содержит мест 
ветвлений. Очевидно, такая область есть частный случай сетеподобных областей, поэтому ис-
пользуются понятия и терминология работ [1, 2]. Слоистая область ℑ  (∂ℑ  — граница ℑ), яв-
ляясь частным случаем сетеподобной области, состоит из двух совокупностей: совокупность 
подобластей ,jℑ  = 1,2,...,j N  ( jℑ  — слои области, j∂ℑ  — границы слоев) и совокупность 
поверхностей ,jS  = 1,2,..., 1j N −  (в литературе jS  — двухсторонние поверхности примыка-
ния слоев, ,jS +  jS −  — стороны jS ). Поверхности jS  являются общими границами примыкаю-
щих слоев .jℑ

Рассматривается задача определения векторной функции 1 2 3( , , ),u u u u=  описывающей ма-
лые упругие деформации при условии жесткого закрепления. При этом предполагается вы-
полнение гипотезы Кирхгофа: элементы поверхностей взаимного примыкания jS  слоев jℑ  не 
подвержены растяжению или сжатию при деформации [1]. В изотропном случае эта задача 
описывается системой дифференциальных уравнений
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функций, имеющих обобщенную производную в области ,ℑ  для которой справедливо инте-
гральное тождество
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0( ( ))V ℑ ) следующим образом.
Обозначим через { }1 3

0 1 2 3( ) := : ( ) = { ( ), ( ), ( )} ( ( )) .u u x u x u x u x Cℑ ∈ ℑ  (здесь 1 3( ( ))C ℑ  — сово-
купность дифференцируемых на jℑ  ( = 1,2,..., )j N  вектор-функций ( ),u x  удовлетворяющих со-
отношениям (2) и (5), дифференцируемость на границах ,j∂ℑ  = 1,2,..., ,j N  понимается как од-
носторонняя).
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Определение 1. Пространство 1 3
0( ( ))V ℑ  — замыкание 0 ( )ℑ  в метрике 1 3

2( ( )) .W Ω
Следует отметить, что 1 3

0( ( ))V ℑ  со скалярным произведением и нормой пространства 
1 3

2( ( ))W ℑ  является гильбертовым пространством и задача (1), (2) отыскания вектора 
1 2 3= ( , , )u u u u  упругих перемещений рассматривается в пространстве 1 3

0( ( )) .V ℑ

Определение 2. Слабым решением задачи (1), (2) является векторная функция 
1 2 3( ) = { ( ), ( ), ( )},u x u x u x u x  удовлетворяющая интегральному тождеству 

	
=1

( ) ( ) =
j

N
j

j
u dx f dxικ ικτ ε η η

ℑ ℑ
∑∫ ∫

для любой функции 1 3
1 2 3 0( ) = { ( ), ( ), ( )} ( ( )) .x x x x Vη η η η ∈ ℑ

2. Метод конечных разностей

Используя метод конечных разностей [3, с. 268] (см. также [4]), для задачи (1), (2) форми-
руется разностная схема в терминах сеточных вектор-функций на сетке hℑ  (подробные рас-
суждения при построении сетки представлены в [4]). Для сеточных функций ,hu  hη  строится 
дискретный аналог условий (5): вводятся кусочно-постоянные интерполяции ˆ ,hu  ˆhη  на сетках 
поверхностей ,jS  = 1,2,..., 1j N −  ( ( )jS kh  — множество элементарных ячеек ( )j js kh S⊂ ) и ин-
тегральные тождества (5) принимают вид суммарного тождества:

	 , ,ˆ ˆ ˆˆ ˆ = 0 ( ), = 1,2,..., 1,
( ) ( )

h h h h h j
S Sj j

u u S kh j N
kh kh

ν νη η η
Λ− +

+ ∀ ∈ −∑ ∑ 	 (6)

здесь 
3

,
=1

ˆ = ( ) ,h xu u x n xν ι
ι

〈 〉∑  на ( )jS kh−  или ( ),jS kh+  где 1( ) = [ ( ) ( )]x i i
i

u x u x u x h e
hι

− −  или 

1( ) = [ ( ) ( )]x i i
i

u x u x h e u x
hι

+ −  ( ie  — направленный по оси ix  единичный вектор), а ,n x〈 〉  — κ -й 

направляющий косинус внешней нормали ( )n x  в произвольной вершине ячейки ( )j js kh S⊂  
(соотношения =

S Sj j
u u+ −  следуют из свойств ˆ ,hu  ˆ .hη

Дискретный аналог дифференциальной системы (1), (2) определяется системой алгебраи-
ческих уравнений

	 ( )
3

=1
( ) = ,j

h h hx
u fικ ι

κκ

τ −∑  = 1,2,..., ,j N 	 (7)

в точках hℑ  на множестве сеточных функций ,hu  удовлетворяющих (6) и равных нулю в гра-

ничных вершинах сетки .hℑ  В системе (7) ( )j
h huικτ  связаны с 1( ) = ( )

2h h x xu u uικ ι κκ ι
ε +  в силу 

соотношений (3), а 
( )

1= ( )h
h kh

f f x dxι
ω∆ ∫  (здесь 1 2 3,h h h h∆ =  ih  — шаги разбиений сетки ,hℑ  ( )khω  — 

элементарные ячейки сетки hℑ ), причем в граничных точках h∂ℑ  сетки hℑ  выполнены гра-
ничные условия 

	 | = 0.h h
u ∂ℑ 	 (8)

для сеточной функции hu . Система (7) определяет разностную схему с условиями (8) для кра-
евой задачи (1), (2).

Теорема 1. Система (7), (8) однозначно разрешима, разностная схема (7). устойчива.
Доказательство. Пусть сеточные функции huι  равны нулю вне сетки .hℑ  Умножим (7) на 

,huι  просуммируем полученные равенства по ι  от 1 до 3 и точкам :hℑ
	 ( )( ) = .j

h h h h h h hx
h h

u u f uικ ι ι ι
κ

τ
ℑ ℑ

∆ −∆∑ ∑
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Используя формулу суммирования по частям =h x h h h x
h h

u v u v
ι ι

ℑ ℑ

∆ −∆∑ ∑  (дискретный аналог 

формулы интегрирования по частям [3, с. 282]), приходим к равенству 
	 ( ) = .j

h h h x h h h
h h

u u f uικ ι ι ικ
τ

ℑ ℑ

∆ ∆∑ ∑ 	 (9)

Перегруппировка слагаемых выражения, учитывая соотношения 1( ) = ( ),
2h h x xu u uικ ι κκ ι

ε +  
, = 1,2,3,ι κ  приводит (9) к виду 

	 ( ) ( ) = .j
h h h h h h h h

h h

u u f uικ ικ ι ιτ ε
ℑ ℑ

∆ ∆∑ ∑ 	 (10)

Так как > 0jµ  и > 0jλ , выражение ( ) ( )j
h h h h h

h

u uικ ικτ ε
ℑ

∆ ∑  в (10) неотрицательное. Покажем, 

что ( ) ( ),j
h h h hu uικ ικτ ε  где 

	 ( ) ( )
3 32 2

, =1 =1
( ) ( ) = 2 ( ) ( ) ,j j j

h h h h h h h hu u u uικ ικ ικ ιι
ι κ κ

τ ε µ ε λ ε+∑ ∑ 	 (11)

эквивалентно ( )
321 2

, =1
( )h h xh

h

u uι κ
ι κ

ℑ
ℑ

= ∆ ∑∑   (сеточной норме hu ). Действительно, используя фор-

мулу суммирования по частям = ,h x h h h x
h h

u v u v
ι ι

ℑ ℑ

∆ −∆∑ ∑  получаем следующие соотношения

	
( )

( )

3
2 2

, =1

3 3
2 2

, =1 , =1

1( ) ( ) = ( ) 2 ( ) =
4

1 1= ( ) = ( ) ,
2 2

h h h h h h x x x x
h h

h x h x x x
xh h

u u u u u u

u u u u u u
x

ικ ικ ι ι κ κκ κ ι ι
ι κ

ι κ ι ι κκ κ ι κι ικι κ ι κ

ε ε
ℑ ℑ

ℑ ℑ

∆ ∆ + +

 
∆ − ∆ + 

 

∑ ∑∑

∑∑ ∑∑
которые приводят к оценке

	
3

2 2

, =1

1 1( ) ( ) ( ) .
2 2h h h h h h x x h

h h

u u u uικ ικ ι κ
ι κ

ε ε
ℑ

ℑ ℑ

∆ ≥ ∆ ≡∑ ∑∑   	 (12)

 Если положить в (2) 1 2 3( ) = { ( ), ( ), ( )} = 0,f x f x f x f x  то , учитывая соотношения (10) и (12), 
приходим к утверждению: линейная система алгебраических уравнений (7), (8) имеет един-
ственное решение 1 2 3( ) = { ( ), ( ), ( )} = 0u x u x u x u x  и она однозначно разрешима для любых .hfι  
При этом из (10)–(12) следует неравенство

	 2 2 2| |h h x h h
h

u u C f C
ℑ ℑ

ℑ

∆ + ≤ ≤∑     	 (13)

с независящей от шагов разбиений сетки hℑ  постоянной .C  Последнее неравенство означает 
устойчивость разностной схемы (7) с условием (8). 

3. Основной результат

Неравенство (13) гарантирует справедливость следующего утверждения.
Теорема 2. Пусть { }hu  множество сеточных функций hu , определенных на сетке hℑ  при 

1 2 3= ( , , ) 0h h h h →  и удовлетворяющих оценке (13). Тогда слабый предел последовательности 
кусочно-постоянных интерполяций ˆ{ }hu , 0h → , будет слабым решением задачи (1), (2) в энер-
гетическом пространстве 1 3

0( ( )) .V ℑ

Следует отметить, что с математической точки зрения приведенные рассуждения и полу-
ченные результаты можно обобщить на решение краевых задач дифракции, т. е. на задачи для 
уравнений, коэффициенты которых терпят разрывы первого рода. На поверхностях (аналоги 
поверхностей ,jS  = 1,2,..., 1j N − ), где рвутся коэффициенты ставятся условия сопряжения 
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(трансверсальности), выражающие непрерывность среды и равновесие сил, действующих на 
нее (аналоги условий (5)). Разрывность коэффициентов уравнения соответствуют тому, что 
среда, как и композит, составлена из двух или нескольких разнородных по своим физическим 
характеристикам материалов. Анализ таких ситуаций аналогичен приведенному в настоящей 
работе. Также следует отметить, что используемый метод применим в анализе гидродинами-
ческих процессов — в случае ламинарных течений. 

Заключение

Для анализа задач теории упругих деформаций указаны принципы построения сходящих-
ся разностных схем, а также путь построения приближений к точному решению исходной 
задачи, соответствующий методу конечных разностей. При этом исследование ведется в клас-
се суммируемых функций с обобщенной производной — строится специальное соболевское 
пространство допустимых решений с энергетической нормой. Представлено описание сло-
истой области и свойства функций с носителем в слоистой области для анализа указанных 
задач. Дифференциальная система заменяется разностной схемой, для которой осуществлен 
достаточно глубокий анализ устойчивости и сходимости. Следует отметить, что с математи-
ческой точки зрения приведенные рассуждения и полученные результаты можно обобщить на 
решение краевых задач дифракции, т. е. на задачи для дифференциальных уравнений, коэф-
фициенты которых терпят разрывы первого рода, а также на задачи сетевой гидродинамики 
для линеаризованной системы Навье — Стокса.
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ОБ УСТОЙЧИВОСТИ SK-ROCK МЕТОДОВ ДЛЯ УРАВНЕНИЙ 
С ЗАПАЗДЫВАНИЕМ В ДЕТЕРМИНИСТИЧЕСКОЙ ЧАСТИ

Санкт-Петербургский государственный университет

А. С. Еремин, Ц. Син

Аннотация. В работе предпринята попытка изучить среднеквадратическую устойчивость 
численного решения стохастического дифференциального уравнения, детерминистиче-
ская часть которого содержит член с запаздывающим аргументом. Анализируется расши-
рение на этот случай метода SK-ROCK из группы методов Рунге — Кутты — Чебышёва, 
демонстрирующего превосходную устойчивость для стохастических дифференциаль-
ных уравнений. Подход для оценки среднеквадратической устойчивости объединяется 
с анализом P-устойчивости методов для обыкновенных дифференциальных уравнений с 
запаздываниями. Для числа этапов 2 и 3 построены области устойчивости для действи-
тельных значений коэффициентов тестового уравнения и проведены численные экспери-
менты, результаты которых согласуются с ожиданием на основе анализа.
Ключевые слова: дифференциальные уравнения с запаздыванием, стохастические диф-
ференциальные уравнения, методы Рунге — Кутты — Чебышёва, S-ROCK, SK-ROCK.

Введение

Методами Рунге — Кутты — Чебышёва (РКЧ) называют такие явные методы Рунге —Кут-
ты, функции устойчивости которых выражаются через полиномы Чебышёва (см., напр., [1]). 
Они обладают хорошей асимптотической устойчивостью решения с постоянным шагом при-
менительно к тестовому уравнению

	 ( ) ( )y t y tλ′ = 	
для значений ,λ  с малыми мнимыми частями, что делает их подходящими быстрыми метода-
ми для параболических задач матфизики. Следует отметить, что эти методы обычно использу-
ются с неким коэффициентом демпфирования, чтобы избежать сужения область устойчиво-
сти до нуля в некоторых точках вдоль действительной оси на комплексной плоскости .λ  
Увеличение коэффициента демпфирования приводит к сокращению длины области устойчи-
вости вдоль действительной оси, но для обыкновенных дифференциальных уравнений (ОДУ) 
обычно достаточно выбрать довольно маленькое значение коэффициента демпфирования, 
что в малой степени влияет на длину области устойчивости.

В [2, 3] приводится анализ устойчивости методов РКЧ для уравнений с постоянным запаз-
дыванием 

	 ( ) ( ) ( )y t y t y tλ µ τ′ = + − 	
и для действительных значений λ  и µ  строится область так называемой P-устойчивости. При 
этом показано, что устойчивость для уравнений с запаздыванием очень сильно зависит от 
способа интерполирования решения, причём лучшие результаты получены для линейной ин-
терполяции как для методов первого, так и второго порядка. Отметим, что результаты [2] по-
казали, что для построения «оптимальных» (наиболее широких как по ,λ  так и по µ) областей 
устойчивости требуется более значительное демпфирование, чем принятое при решении ОДУ.

В работах [4–6] рассмотрены методы S-ROCK для стохастических дифференциальных 
уравнений (СДУ)

	 ( ) ( )( ) ( ) ( ) ( )dy t f y t dt g y t dW t= + 	
и представлен анализ их среднеквадратической устойчивости для линейных СДУ. «Оптималь-
ные» значение демпфирования приведены в [7] (там рассматривается СДУ с запаздыванием в 
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стохастическом члене, но поскольку результат получен для всех возможных величин запазды-
вания, он сводим к случаю простого СДУ). Оказывается, для S-ROCK требуется очень боль-
шое демпфирование, что существенно ограничивает длину области устойчивости.

Значительное улучшение с этой точки зрения представляют SK-ROCK методы [8], которые 
расширяют ROCK на СДУ по-другому. Эти методы обладают превосходной устойчивостью 
относительно величины стохастического члена и для покрытия максимально возможной об-
ласти точной устойчивости решения линейного СДУ им требуется довольно маленькое демп-
фирование.

Анализ среднеквадратической устойчивости для уравнений с запаздыванием в стохастиче-
ской части рассматривался для различных методов, см. напр. [9, 10]. Однако для уравнений с 
запаздыванием в детерминистической части такие исследования не проводились, по крайней 
мере, для ROCK-методов. Впервые применение S-ROCK к таким уравнениям рассмотрено в 
[11], где получены области устойчивости методов с малым числом этапов, совмещающие ана-
лиз среднеквадратической устойчивости стохастического решения и P-устойчивость решений 
ОДУ с запаздываниями. Как оказалось, необходимое демпфирование методов S-ROCK накла-
дывает существенные ограничения на размер области устойчивости. В настоящей работе мы 
рассмотрим применение методов SK-ROCK к таким же уравнениям с запаздыванием.

1. SK-ROCK методы для уравнений с запаздыванием в детерминистической части

Рассмотрим стохастическое уравнение Ито с запаздыванием

	
( ) ( ) [ ]

[ ]
( ) ( ), ( ) ( ) ( ), 0, ,

( ) ( ), ,0 ,

dy t f y t y t dt g y t dW t t T

y t t t

τ

ϕ τ

 = − + ∈


= ∈ −
	 (1)

с постоянным запаздыванием 0,τ >  где ( )W t  — скалярный винеровский процесс. Начальная 
функция ( )tϕ  является непрерывной на [ ,0]τ−  и удовлетворяет условию [ ]

2
,0sup ( ) .t tτ ϕ∈ −

  < +∞ Ε  
Мы предполагаем, что функции f  и g  являются липшицевыми и удовлетворяют условию 
линейного роста, тем самым обеспечивая существование и единственность решения на про-
извольном промежутке времени. 

Метод SK-ROCK [8] с s  этапами с линейной интерполяцией решения для (1) на n-м шаге 
из точки 1 1( , )n nt y− −  в точку ( , )n nt y  имеет следующий вид:
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где интерполянт ( )tη  определяется как

	
( )

0

1
1 1

( ), ,
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1 , , [ , ], 1,..., 1,k
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t t t
t t ty y t t t k n

h
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η
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	 (2б)

а абсциссы метода Рунге — Кутты 0 1ic≤ ≤  вычисляются как

	 ( )1 0 2 01
1 2 1 0 1 1

0 0 0

( ) ( )0, , 2 , 2,..., , 1.
( ) ( )

i i
i i i s

i i

T w T wwc c c w w c c i s c
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В выражениях выше

	 0
0 12

0

( )1 , ,
( )

s

s

T ww w
s T w
ε

= + =
′

где 0ε ≥  — коэффициент демпфирования.

2. Среднеквадратическая P-устойчивость

Исследование устойчивости метода (2) должно объединять анализ среднеквадратической 
устойчивости методов решения СДУ и устойчивости методов решения дифференциальных 
уравнений с запаздываниями, которая в простом случае рассматривается на примере линей-
ных уравнений с постоянными коэффициентами (аналог тестового уравнения Далквиста для 
ОДУ [1]) и называется P-устойчивостью [12]. Рассмотрим тестовое уравнение с запаздывани-
ем и стохастическим членом

	 ( )( ) ( ) ( ) ( ) ( ).dy t y t y t dt y t dW tλ µ τ σ= + − + 	 (3)
Отметим, что в настоящей работе мы ограничимся рассмотрением лишь действительных 

значений коэффициентов ,λ  µ  и .σ
Применяя SK-ROCK к (3) и используя упрощение, возможное вследствие линейной интер-

поляции (2б) (см. [11]), получим разностное уравнение
	 ( )1

1 1 1( ) ( ) ( ) ( ) ,T
n n n m n m n ny R y b E A u c y cy Q y Wα β α α σ−

− − − − −= + − − + + ∆ 	 (4)

где ,hα λ=  ,hβ µ=  ,A  b  и c  — матрица и векторы коэффициентов рассматриваемого метода 
Рунге — Кутты (получаемые путём записи метода (1) как явного метода РК в классической 
форме), E  — единичная ( )s s× -матрица, u  — вектор из s  единиц, 

	 0 1

0

( )( )
( )

s

s

T w wR
T w

αα +
=  —	

функция устойчивости метода РКЧ для ОДУ, а

	 1 0 1 1

0

( )( ) 1
( ) 2

s

s

U w w wQ
U w

αα α− +  = + 
 

 —	

функция, участвующая в анализе устойчивости SK-ROCK методов [8]. iT  и iU  — полиномы 
Чебышёва первого и второго рода соответственно.

Математическое ожидание квадрата модуля от обеих частей (4) даёт

	 ( ) 22 21 2
1 1 1( ) ( ) ( ) ( ) ,T

n n n m n m ny R y b E A u c y cy Q yα β α κ α−
− − − − −

    = + − − + +     
Ε Ε Ε 	 (5)

где 2.hκ σ=  Это выражение довольно трудоёмко для анализа, поэтому мы для анализа устой-
чивости используем другой подход.

При выводе P-устойчивости для уравнений без стохастического члена ( 0)κ =  разностное 
выражение в правой части заменяется на 1( , ) ,nP z yα −  где ( , )P zα  — функция P-устойчивости 
метода РКЧ, выражаемая при линейной интерполяции [11] как

	
1

1

( )( , ) 1 ( ) ,
1 ( )

T

T

b E A uP z z
zb E A c

αα α
α

−

−

−
= + +

− −
	

а z  — вспомогательная комплексная переменная, участвующая в определении границ устой-
чивости по β  при фиксированном α  [12].

С некоторой осторожностью в (4) можно сделать аналогичную замену и получить оценку 
снизу области среднеквадратической P-устойчивости

	 { },( , , ) [0, ) : , ,MSP AS S α κα β κ α β γ⊇ ∈ × × +∞ ∈ ≤  	 (6)
где
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	 { }
,

2 2
, ,inf , : ( , ) ( ) 1 .

z
z z P z Q

α κ
α κ α κγ α κ α

∈Γ
= Γ = ∈ + = 	

Заметим, что даже при рассмотрении только действительных значений ,λ  µ  и σ  требует-
ся исследовать область при всех комплексных значениях ,z  аналогично тому, как это требует-
ся для P-устойчивости при 0σ =  [12].

В трёхмерном пространстве ( , , )α β κ  область устойчивости точного решения уравнения 
(3) описывается выражением 2 2 0α β κ+ + <  [13]. На рис. 1 и 2 граница этой области показа-
на черной плоской решёткой. Красные поверхности отображают среднеквадратическую 
устойчивость метода в отсутствие запаздывания, а жёлтые — ограничения ,α κγ  на ,β  получен-
ные для каждой пары ( , ).α κ

«Оптимальный» коэффициент демпфирования обусловлен P-устойчивостью рассматрива-
емых методов. К сожалению, даже не столь большое демпфирование, как в случае методов 

а б
Рис. 1. Области устойчивости двухэтапного метода SK-ROCK (а) без демпфирования 0ε =  

и (б) с оптимальным для P-устойчивости демпфированием 1.05ε =

а б
Рис. 2. Области устойчивости трёхэтапного метода SK-ROCK (а) без демпфирования 0ε =  

и (б) с оптимальным для P-устойчивости демпфированием 0.85ε =
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S-ROCK [7] приводит к заметному сокращению длины области устойчивости вдоль .α  В то же 
время можно надеяться [2], что при увеличении числа этапов s  необходимое демпфирование 
будет уменьшаться и на методы с большим количеством этапов оно окажет меньшее влияние.

3. Численные примеры

Для нескольких наборов параметров ( , , )α β κ  мы проводим решение уравнения (3) мето-
дам (2) с двумя и тремя этапами с постоянным шагом 1 8h =  на отрезке [0,10].  В качестве 
предыстории выбрана константная функция ( ) 1,tϕ =  запаздывание 1.τ =  По результатам 
10000 испытаний мы получаем оценку математического ожидания квадрата решения. Графики 
на рис. 3 и 4 отражают ожидаемое поведение методов.

а б
Рис. 3. Поведение усреднённого решения задачи (3) двухэтапным методом 

SK-ROCK с (а) 0ε =  и (б) 1.05ε =

а б
Рис. 4. Поведение усреднённого решения задачи (3) трехэтапным методом 

SK-ROCK с (а) 0ε =  и (б) 0.85ε =

Заключение

Представленный анализ является попыткой изучить устойчивость численного решения 
стохастического уравнения с запаздыванием. Сложность формул, которые возникают при не-
нулевом демпфировании чебышёвских методов в применении к таким уравнениям, требует 
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очень трудоёмких вычислений для определения оптимального демпфирования, потому в ра-
боте представлены лишь самые простые из методов SK-ROCK с малым числом этапов. В то же 
время результаты позволяют в первом приближении разделить анализ среднеквадратической 
устойчивости для SK-ROCK в применении к СДУ и P-устойчивости ROCK-методов для диф-
ференциальных уравнений с запаздыванием.
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УДК 517

ДОСТАТОЧНЫЕ УСЛОВИЯ СЛАБОГО ЭКСТРЕМУМА 
ФУНКЦИОНАЛА С ПРОИЗВОДНОЙ ПО МЕРЕ

Воронежский государственный университет

К. И. Казакевич

Аннотация. Рассматривается функционал с производными по мере, описывающий пол-
ную энергию разрывной струны, помещенной во внешнюю среду с локализованными 
особенностями, приводящими не только к потере гладкости у решения, но и разрывно-
сти самого решения. Получены достаточные условия слабого минимума функционала в 
классе абсолютно непрерывных функций, первая производная которых суммируема с 
квадратом.
Ключевые слова: функционал, интеграл Стилтьеса, производная по мере, слабый экстре-
мум, достаточные условия, краевая задача, разрывная струна.

Введение

В задачах математической физики и механики деформируемых тел часто возникают функ-
ционалы, зависящие от производных функций, определённых по мере. Одним из таких яв-
ляется функционал с интегралом Стилтьеса, который описывает полную потенциальную 
энергию разрывной струны с внутренними и внешними особенностями — например, систем, 
содержащих разрывные элементы и взаимодействующих с неоднородной средой.

Анализ подобных функционалов приводит к необходимости рассмотрения краевых задач 
с производными по мере. В ряде работ получены необходимые условия экстремума для таких 
функционалов, однако вопросы, связанные с достаточными условиями слабого минимума, 
требуют дальнейшего изучения.

В настоящей работе рассматривается функционал с интегралом Стилтьеса на множестве 
µ-абсолютно непрерывных функций, первая производная которых суммируема с квадратом. 
Получены достаточные условия слабого экстремума указанного функционала.

1. Основной результат

На множестве E  — µ-абсолютно непрерывных на [0, ]s  функций, первая производная 
( )u xµ′  которых имеет конечное на [0, ]µ  измерение, удовлетворяющее условиям (0) ( ) 0.u u= =
Рассмотрим функционал полной потенциальной энергии разрывной струны с внутренни-

ми и внешними особенностями — в ней есть дефекты, утяжеления, или она состоит из частей 
с разными свойствами. Также на неё действует ещё и внешняя среда, которая также не везде 
одинакова (например, в некоторых точках есть «толчки»):

	
2 2

0 0 0
( ) [ ] [ ].

2 2
l l lpu uu d d Q ud Fµϕ µ

′
= + −∫ ∫ ∫ 	 (1)

Будем говорить, что функция ( ),xϕ  определенная на множестве [0, ] ,µ  имеет конечное на 
этом множестве измерение, если при произвольном разбиении множества [0, ]µ  точками 

[0, ]ix l µ∈  сумма (0, , , , )i f n= … …

	 1
1

( ) ( )
n

i i
i

x xϕ ϕ −
=

−∑
ограничена, то есть существует константа 0C >  такая, что 
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	 1
1

( ) ( )
n

i i
i

x x Cϕ ϕ −
=

− <∑
для произвольного разбиения множества [0, ]µ  конечным набором точек { }.ix  Иными слова-
ми — мы берем этот отрезок и устанавливаем в него точки-гвозди в произвольных местах. 
Элементы этой суммы и есть наши «гвозди»: 0x  здесь — первый гвоздь, nx  — последний гвоз-
дь. И для каждого маленького отрезка между гвоздями 1[ , ]i ix x− мы смотрим, насколько изме-
нилась функция. 1[ ( ) ( )]i ix xϕ ϕ −−  — модуль разности. При этом нас не интересует, выросли мы 
или упали, нас интересует «амплитуда нашего движения» на этом участке. Для этого мы и 
складываем все эти «амплитуды» для всех участков. 

Данная сумма — это общая длина всех наших «подъемов» и «спусков» при движении от 
начала до конца по выбранным нами точкам. Это как, если бы мы измерили длину нити, кото-
рую нужно было бы растянуть вертикально, чтобы пройти весь график по этим точкам. Здесь 
мы говорим, что у функции конечное изменение, если независимо от того, как мы устанавли-
ваем наши гвозди-точки (даже если мы будем ставить их бесконечно близко друг к другу), эта 
общая длина «подъемов и спусков» никогда не превысит какую-то определенную величину C 
(функция ( )xϕ  «не может бесконечно сильно дергаться» на своем промежутке). Тем самым, 
мы можем гарантировать, что функции, с которыми они работают (и их производные), не ве-
дут себя «совсем патологически».

Заметим, что функционал (1) является функционалом потенциальной системы «разрыв-
ной» струны (см. [4]). В работе [4] получено необходимое условие минимума ( )uϕ  на E  в виде 
интегро-дифференциального уравнения

	
0

( ) (0) [ ] ( ) (0)
x

pu x pu ud Q F x Fµ µ′ ′− = − +∫ 	 (2)

дополненное краевыми условиями (0) ( ) 0.u u= =
Также была изучена спектральная задача:

	 0 0

( ) (0) [ ] [ ],

(0) ( ) 0.

x x

pu x pu ud Q ud M

u u l

µ µ λ


′ ′− = −

 = =

∫ ∫

В частности, доказана осцилляционность спектра.
Полученный в [4] результат важен для нашего исследования. Он даёт мощный математиче-

ский инструмент. Условие «спектр положителен» в дальнейшем поможет нам свестись к про-
верке, что самое первое (наименьшее) собственное число 1 0.λ >  Если это так, то все осталь-
ные nλ  будут заведомо положительными благодаря осцилляционности.

В дальнейшем мы получим достаточные условия слабого экстремума функционала (1) на E.
Нам удобнее (2) заменить на более привычное для теории дифференциальных уравнений, 

уравнением:
	 [ ] [ ] [ ]( ) ( .)pu uQ Fµ σ σ σ′ ′ ′ ′− + = 	 (3)
Понимая уравнение (3) в точках разрыва ξ  функции ( )xµ  как два равенства:
	 ( )( ) ( 0) ( ) ( ),pu u Q Fµ ξ ξ ξ ξ− − −′−∆ + − ∆ = ∆ 	 (4)

	 ( )( ) ( 0) ( ) ( ),pu u Q Fµ ξ ξ ξ ξ+ + +′−∆ + − ∆ = ∆ 	 (5)

где ( ) ( ) ( 0)f x f x f x−∆ = − −  и ( ) ( 0) ( )f f fξ ξ ξ+∆ = + −  — левый и правый скачки функции 
( )f x  в точке x  соответственно.

Физический смысл в том, что эти уравнения — условия баланса сил в точке разрыва. 
Пусть 0 ( )u x  является решением краевой задачи:

	 [ ] [ ] [ ]( ) ( )
(0) ( ) 0

,pu uQ F
u u l

µ σ σ σ′ ′ ′ ′− + =


= =
	 (6)
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Пусть спектр (набор собственных чисел) задачи 

	 [ ] [ ]( ) ( )
(0) ( ) 0.

;pu uQ u
u u l

µ σ σ λ′ ′ ′− + =


= =
положителен. Тогда функция 0 ( ),u x  которая является решением краевой задачи (6), доставля-
ет слабый минимум функционалу энергии (1) на множестве E,  то есть действительно является 
состоянием с минимальной потенциальной энергией.

Заключение

В работе исследован функционал с производной по мере, описывающий потенциальную 
энергию разрывной струны с внутренними особенностями. Получены достаточные условия 
слабого экстремума.
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Аннотация. В статье проводится систематическое исследование полиномов Эрмита — 
классических ортогональных многочленов, играющих фундаментальную роль в различ-
ных разделах математики и теоретической физики. Подробно изучаются их аналитиче-
ские свойства, включая явные представления, рекуррентные соотношения, производящие 
функции и свойства ортогональности. Особое внимание уделяется приложениям поли-
номов Эрмита в квантовой механике, теории вероятностей, численном анализе, обработ-
ке сигналов, теории информации и управления. Работа демонстрирует универсальность 
и мощь аппарата полиномов Эрмита для решения широкого круга прикладных задач.
Ключевые слова: полиномы Эрмита, ортогональные многочлены, квантовый гармони-
ческий осциллятор, ряды Фурье — Эрмита, разложение Эджворта, численные методы, 
метод Галёркина, обработка сигналов, теория информации.

Введение

Полиномы Эрмита ( )nH x  занимают особое место в семействе классических ортогональ-
ных многочленов. Впервые они были введены П. Л. Чебышевым в 1859 году при исследовании 
предельных свойств некоторых классов функций. Более глубокое изучение этих полиномов 
было проведено Шарлем Эрмитом в 1864 году, чьё имя они впоследствии и получили [1–3].

Исторически полиномы Эрмита возникли в связи с задачами математической физики, в част-
ности, при решении дифференциальных уравнений параболического типа. Однако со временем 
область их применения существенно расширилась, охватив такие разделы науки, как квантовая 
механика, теория вероятностей, численный анализ, теория сигналов и многие другие.

Фундаментальное значение полиномов Эрмита связано с тем, что они являются собствен-
ными функциями сингулярной задачи Штурма — Лиувилля для дифференциального опера-
тора второго порядка специального вида. Это свойство позволяет использовать их для разло-
жения произвольных функций в ряды по системе полиномов Эрмита — аналоги рядов Фурье.

Важной особенностью полиномов Эрмита является то, что они не принадлежат простран-
ству 2 ( )L R  функций, интегрируемых с квадратом на всей вещественной оси, но являются ор-
тогональными в весовом пространстве 

22 ( , e ).xL −R  Это свойство открывает возможности для 
построения различных аппроксимационных методов и решения задач математической физи-
ки на неограниченных областях.

Цель настоящей работы — систематическое изложение теории полиномов Эрмита, вклю-
чая их основные свойства, методы вычисления и разнообразные приложения в современной 
математике и физике.

Основные свойства полиномов Эрмита

Полиномы Эрмита могут быть определены несколькими эквивалентными способами. Наи-
более компактное определение задаётся формулой Родрига:

	
2 2

( ) = ( 1) e e .
n

n x x
n n

dH x
dx

−−
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Это представление непосредственно связывает полиномы Эрмита с функцией Гаусса и её 
производными.

Явный вид полинома Эрмита степени n может быть получен из формулы Родрига и имеет 
вид [4]

	 22
=0

( 1)( ) ! (2 ) ,
!( 2 )!

n k
n k

n k
H x n x

k n k

 
  −  −

=
−∑ ,

где 
2
n 
  

 обозначает целую часть от .
2
n 
  

 Из этой формулы непосредственно видно, что поли-

номы Эрмита являются целыми функциями и обладают свойством чётности:
	 ( ) = ( 1) ( ).n

n nH x H x− −
Для практических вычислений особенно важны рекуррентные соотношения, позволяю-

щие последовательно вычислять полиномы Эрмита высоких степеней. Основное рекуррент-
ное соотношение имеет вид:

	 1 1( ) = 2 ( ) 2 ( ),n n nH x xH x nH x+ −−
с начальными условиями:

	 0 1( ) = 1, ( ) = 2 .H x H x x
Это соотношение существенно упрощает вычисление значений полиномов Эрмита и ле-

жит в основе многих численных алгоритмов.
Также полезно соотношение, связывающее производные полиномов Эрмита:

	 1( ) = 2 ( ).n n n
d H x H x
dx −

Важным инструментом теории полиномов Эрмита является производящая функция:

	
22

=0

( ) = .
!

n xz zn

n

H x z e
n

∞
−∑

Это представление позволяет компактно записывать различные тождества, связанные с 
полиномами Эрмита, и является мощным инструментом при доказательстве их свойств.

Одно из наиболее важных свойств полиномы Эрмита — их ортогональность с весовой 
функцией на всей вещественной оси:

	
2 2

e e ( ) ( ) = 2 ! ,x x n
n m nmH x H x dx n πδ∞− −

−∞∫
где nmδ  — символ Кронекера. Это свойство позволяет использовать систему полиномов Эрми-
та как ортогональный базис в гильбертовом пространстве 

22 ( , e ).xL −R
Полиномы Эрмита удовлетворяют линейному однородному дифференциальному уравне-

нию второго порядка:
	 2 2 = 0,y xy ny′′ ′− +

где = ( ).ny H x  Это уравнение является частным случаем уравнения Штурма — Лиувилля и 
играет важную роль в различных приложениях.

Разложение функций в ряды Фурье — Эрмита

Благодаря свойству ортогональности, полиномы Эрмита образуют полную систему в про-
странстве 

22 ( , e ).xL −R  Это означает, что для любой функции ( )f x  из этого пространства спра-
ведливо разложение в ряд Фурье — Эрмита:

	
=0

( ) : ( ),n n
n

f x a H x
∞

∑
где коэффициенты Фурье — Эрмита определяются формулой:
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21= e ( ) ( ) .

2 !
x

n nn
a H x f x dx

n π

∞ −

−∞∫
Это разложение сходится к функции ( )f x  в смысле нормы пространства 

22 ( , e ).xL −R
Рассмотрим пример разложения функций в ряд Фурье–Эрмита. Возьмем функцию 

2 2

( ) = e .a xf x −  Тогда коэффициенты Фурье — Эрмита будут иметь вид:

	 ( )
2

2
21= e e .

2 !

x
x

n nn
a H x dx

n π

∞ −−

−∞∫
В силу четности этой функции все нечетные коэффициенты na  равны нулю. А для четных, 

используя интегральное представление многочленов Эрмита 
Имеем

	 ( )
2

2 2 2

2
11

( 1) 2
2 2 12 0

2 2

1( 1)
1 2( 1) 2= e .
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Следовательно, используя формулу удвоения для гамма-функции, получим

	 ( ) ( )2 2

2
2

2 21 1
=0 =02 2 22 2

1( 1)
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Из этой формулы нетрудно получить разложение для интеграла вероятности

	 ( )2

2 130
=0

2 1 ( 1)( ) .
2 !(2 1)2

nx t
nn

n
x e dt H x

n nπ π

∞
−

+

−
Φ = =
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Этот ряд сходится при всяком x  и гораздо быстрее, чем степенное разложение интеграла 

вероятности.

Приложения полиномов Эрмита

Наиболее известное приложение полиномов Эрмита связано с квантовой механикой, а 
именно — с решением уравнения Шрёдингера для квантового гармонического осциллятора. 
В частности, волновые функции стационарных состояний гармонического осциллятора выра-
жаются через полиномы Эрмита:

	
21

2
21( ) = e ( ).

2 !

x

n nn
x H x

n
ψ

π

− 
 
 

Эти волновые функции являются собственными функциями оператора Гамильтона гармо-
нического осциллятора и образуют полный ортонормированный базис в пространстве ква-
дратично интегрируемых функций.

Полиномы Эрмита также используются при решении уравнения Шрёдингера для других 
потенциалов, например, для анизотропного осциллятора и в теории когерентных состояний.

В теории вероятностей полиномы Эрмита естественным образом возникают в связи с нор-
мальным распределением. Они используются в разложении Эджворта — асимптотическом 
разложении функции плотности распределения, близкого к нормальному.

Разложение Эджворта для функции плотности вероятности ( )f x  имеет вид:

	
2

2

=3

1( ) e 1 ( ) ,
2

x

n n
n

f x c H x
π

∞−  ≈ +  
∑

где коэффициенты nc  выражаются через кумулянты распределения. Это разложение позволя-
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ет учитывать отклонения от нормальности и получать более точные аппроксимации для раз-
личных статистических распределений.

Другое вероятностное приложение полиномов Эрмита — это разложение в хаос случайных 
процессов. Концепция однородного хаоса, введенная Винером в 1938 году, предполагает изу-
чение квадратично интегрируемых нелинейных функционалов броуновского движения. Эта 
концепция была переосмыслена Кэмероном и Мартином, которые разработали ортогональ-
ный базис для этих функционалов, используя так называемые функционалы Фурье-Эрмита, 
образованные из тензорных произведений полиномов Эрмита. Позднее, в 1951 году, Ито пред-
ложил конструкцию кратных винеровских интегралов для использования в ортогональном 
разложении пространства квадратично интегрируемых броуновских функционалов 

В численном анализе полиномы Эрмита находят разнообразные применения:
1. Аппроксимация функций — благодаря своей ортогональности на всей вещественной 

оси, полиномы Эрмита эффективно используются для аппроксимации функций, заданных на 
неограниченных интервалах [4].

2. Решение дифференциальных уравнений — метод Галёркина с использованием полино-
мов Эрмита позволяет решать дифференциальные уравнения, сводя задачу к системе алгебра-
ических уравнений. Этот метод особенно эффективен для задач с граничными условиями на 
бесконечности [5].

3. Метод конечных элементов — полиномы Эрмита используются в качестве базисных 
функций в методах конечных элементов для задач на неограниченных областях [6].

4. Численное интегрирование — квадратурные формулы Гаусса–Эрмита позволяют эф-
фективно вычислять интегралы вида 

2

e ( )x f x dx
∞ −

−∞∫  [7]. 

Заключение

Проведённое исследование демонстрирует фундаментальное значение полиномов Эрмита 
в современной математике и физике. Эти классические ортогональные многочлены обладают 
богатой структурой и многочисленными замечательными свойствами, которые делают их не-
заменимым инструментом в различных прикладных областях.

Аналитическая теория полиномов Эрмита, включающая их явные представления, рекур-
рентные соотношения, производящие функции и свойства ортогональности, представляет 
собой законченную и элегантную математическую конструкцию. Дифференциальное уравне-
ние, которому удовлетворяют полиномы Эрмита, связывает их с важными задачами матема-
тической физики.

Широкий спектр приложений полиномов Эрмита — от квантовой механики до обработ-
ки сигналов и теории управления — свидетельствует об их универсальности и практической 
значимости. Особенно важно их применение в задачах на неограниченных областях, где тра-
диционные методы часто оказываются неэффективными.

Дальнейшие исследования могут быть направлены на развитие методов численного ин-
тегрирования с использованием полиномов Эрмита, создание эффективных алгоритмов для 
разложения функций в ряды Фурье — Эрмита, а также на применение этих методов к реше-
нию нелинейных задач математической физики.
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Аннотация. В статье изучаются операторы преобразования типа Векуа — Эрдейи — Ла-
ундеса, которые применяются к первой производной. Эти операторы применяются для 
решения разнообразных задач для дифференциальных уравнений, в частности для урав-
нений типа теплопроводности.
Ключевые слова: оператор преобразования, сплетающее свойство, интегральный опе-
ратор, ядро, операторы Векуа — Эрдейи — Лаундеса, оператор Вольтерра, сплетающий 
оператор.

Введение

Метод операторов преобразования используется для решения различных задач (см. [1]). 
В статье рассматриваются результаты по построению и применению операторов преобразо-
вания для операторов первого и второго порядков. Также приводятся приложения точных 
представлений для операторов преобразования к уравнениям в частных производных. В част-
ности, показано, как методы, основанные на полных семействах решений, могут быть распро-
странены на другие уравнения.

Дадим определение оператора преобразования, следуя [1]. Пусть у нас есть два оператора 
( , ).A B  Ненулевой оператор T  называется оператором преобразования, если выполняется сле-
дующее соотношение

	 = .TA BT 	 (1)
Соотношение (1) называется сплетающим свойством, а оператор T  также называют спле-

тающим оператором.
Оператор T  обычно является интегральным оператором с некоторым ядром, вид которого 

иногда можно найти явно.
Первостепенное значение для метода операторов преобразования имеет выбор соответ-

ствующих пространств функций, где справедливо равенство (1).
Ключевые концепции и проблемы теории операторов преобразования излагаются в об-

зоре [2]. Кроме того, в [2] приводится перечень наиболее значимых применений операторов 
преобразования в обратных задачах, теории рассеяния, спектральном анализе, линейных и 
нелинейных дифференциальных уравнениях, построении солитонов, а также в обобщенных 
аналитических функциях, краевых задачах, теории дробного интегро-дифференцирования и 
вложениях функциональных пространств.

Одним из приложений операторов преобразования является то, что они устанавливают 
связь между решениями двух задач математической физики, одна из задач рассматривается 
как модельная.

Например, в статье [3], получено следующее утверждение.
Пусть n  — целое положительное число, 1 1= ( )q q x  и 2 2= ( )q q x  — вещественные функции, 

удовлетворяющие условию 
	

0
| ( ) | < , = 1,2

a a
it q t dt i+∞∫

при любом конечном > 0a  и некотором положительном 1<
2

a .



96

Теорема [3]. Для любой пары дифференциальных операторов 1L  и 2L  вида, 

	 1 1 2

( 1)= ,n nL y y q y
x
− ′′ − +  

	 2 2 2

( 1)= n nL y y q y
x
− ′′ − +  

существует оператор Вольтерра 
1 2L LV  переводящий решение дифференциального уравнения 

	 2
1 = 0L y s y+

с условием в нуле вида 

	

1
2

0

2=lim 1
2

n

nx

y
x n

−

→  Γ + 
 

в решение дифференциального уравнения 
	 2

2 = 0L y s y+
с тем же условие в нуле.

В нашей статье получен специальный класс операторов преобразования, которые сплета-
ют операторы 1A λ+  и 2 ,A λ+  где 1 2:A L L→  — некоторый оператор, 1 2, .λ λ ∈C  Такие опера-
торы преобразования появляются в работах А. Эрдейи, И. Н. Векуа и Дж. С. Лаундеса (см. ссыл-
ки в [5]). Поэтому их естественно называть операторами Векуа — Эрдейи — Лаундеса (ВЭЛ).

Используя оператор преобразования ВЭЛ, получим утверждение о связи между решения-
ми задач Коши для уравнений =tw Aw  и 2 = ,tw c w Aw±  где = ( , ),w w x t  , ,t c∈R  A  — линей-
ный оператор, действующий по .nx∈R  К этому типу относятся, например, уравнение тепло-
проводности, одномерное уравнение Шрёдингера. Такие уравнение часто встречается в теории 
тепло- и массопереноса. Они описывают нестационарные тепловые процессы в покоящейся 
среде или твердом теле с постоянной температуропроводностью.

Построение операторов преобразования типа Векуа — Эрдейи — Лаундеса для первой 
производной в форме операторов Вольтерра второго рода

В этом разделе мы строим операторы преобразования cL±  со сплетающим свойством 
	 2= ( ) .c cL Df D c L f± ±±
Процесс построения включает интегрирование по частям и дифференцирование интегра-

ла по параметру, а также решение линейного однородного дифференциального уравнения в 
частных производных первого порядка.

Теорема 1. Пусть 1( ).f C∈ R  Тогда операторы преобразования cL±, удовлетворяющие тож-
деству 

	 2= ( ) ,c cL Df D c L f± ±± 	 (2)

где = dD
dt

, имеют вид операторов Вольтерра 

	 ( )( ) = ( , ) ( ) ,
t

c
t

L f t K t f dτ τ τ± ±

−
∫ 	 (3)

ядра которых ( ) 1 2, ( )K t Cτ± ∈ R  имеют вид 

	 ( ) 2
, = ( ),cK t e tττ τ± ⋅Φ − 	 (4)

где ( )sΦ  — произвольная, непрерывно дифференцируемая на ,R  функция.
При дополнительных условиях 
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2( , ) = , ( , ) = 0,

2
dK t t c K t t

dt

+
+−

− 	 (5)

ядро K +  имеет вид 

	
22 ( )
2( , ) = ( ) .

4

c tcK t t e
τ

τ τ
− ++ − −

При дополнительных условиях 

	
2( , ) = , ( , ) = 0,

2
dK t t c K t t

dt

−
−− 	 (6)

ядро K −  имеет вид 

	
22 ( )
2( , ) = ( ) .

4

c tcK t t e
τ

τ τ
+− − −

Доказательство.
Мы ищем оператор преобразования, удовлетворяющий тождеству (2), в форме оператора 

Вольтерра (3). Здесь ядро ( , )K t τ±  — гладкая по обеим переменным на 2R  функция.
Рассмотрим сначала случай 
	 2= ( ) .c cL Df D c L f+ ++
Имеем 

	 = ( , ) ( ) ,
t

c
t

L Df K t f dτ τ τ+ +

−

′∫

	 2 2( ) = ( , ) ( ) ( , ) ( ) .
t t

c
t t

dD c L f K t f d c K t f d
dt

τ τ τ τ τ τ+ + +

− −

+ +∫ ∫
Подстановка в (2) приводит к соотношению 

	 2( , ) ( ) = ( , ) ( ) ( , ) ( ) .
t t t

t t t

dK t f d K t f d c K t f d
dt

τ τ τ τ τ τ τ τ τ+ + +

− − −

′ +∫ ∫ ∫
Поскольку, интегрирование по частям приводит к 

	 ( , ) ( ) = ( , ) ( ) ( , ) ( ) ( , ) ( ) ,
t t

t t

K t f d K t t f t K t t f t K t f dττ τ τ τ τ τ+ + + +

− −

′ − − − −∫ ∫
а дифференцирование интеграла по параметру к 

	 ( , ) ( ) = ( , ) ( ) ( , ) ( ) ( , ) ( ),
t t

t
t t

d K t f d K t f d K t t f t K t t f t
dt

τ τ τ τ τ τ+ + + +

− −

+ − − −∫ ∫
то мы получаем 

	 2( , ) = ( , ) ( , ).tK t K t c K tτ τ τ τ+ + +− + 	 (7)
Уравнение (7) является линейным однородным дифференциальным уравнением в частных 

производных первого порядка. Запишем его в виде 
	 2( , ) ( , ) = ( , ).tK t K t c K tτ τ τ τ+ + ++ − 	 (8)
Используя метод характеристик Лагранжа для решения уравнения в частных производных 

первого порядка для уравнения (8) составим систему уравнений 

	 2

( , )= = = .
1 1 ( , )

d dt dK t ds
c K t

τ τ
τ

+

+−

Найдем первое характеристическое уравнение: 

	 1= = .
1 1

d dt t Cτ τ⇒ −
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Найдем второе характеристическое уравнение:

( ) ( )2 2 2
2 2

( , ) 1= = ln ( , ) = ln ( , )
1 ( , )

d dK t c K t c c K t
c K t c

τ τ τ τ τ τ
τ

+
+ +

+− ⇒ − ⇒ − ⇒

2 22 2 2 2ln ln( ( , )) = 0 ln ln( ( , )) = 0 ln( ( , )) = 0c cc e c K t e c K t c e K tτ τ ττ τ τ+ + ++ ⇒ + ⇒ ⇒
2

2( , ) = .cK t e Cττ+ ⋅
Тогда общее решение уравнения (8) имеет вид 

	
2

( , ) = ( ),cK t e tττ τ+ − ⋅Φ − 	 (9)
где ( )sΦ  — произвольная непрерывно дифференцируемая функция. Действительно, 

	
2 22( , ) = ( ) ( ),c cK t c e t e tτ τ

τ τ τ τ+ − − ′− ⋅Φ − + ⋅Φ −

	
2

( , ) = ( ),c
tK t e tττ τ+ − ′− ⋅Φ −

что и дает (8) и первый случай из (4) доказан.
Чтобы найти конкретный вид функции ( )sΦ , используем дополнительные условия (5). 

Введение новых переменных 

	 = , = = , =
2 2

t tu v u v t u vτ τ τ+ −
⇒ + −

и использование обозначений ( , ) = ( , ) = ( , )H u v K u v u v K t τ+ + +− +  приводит задачу (8)–(5) к 
задаче 

	

2

2

( , ) = ( , );

(0, ) = .
2

uH u v c H u v
cH v v

+ +

+

 −



−
Поскольку K +  имеет вид (9), то 

	
2 ( )( , ) = ( , ) = (2 ).c u vH u v K u v u v e v+ + − ++ − ⋅Φ

Из условия 
2

(0, ) =
2
cH v v+ −  получаем 

	
22

(0, ) = (2 ) = .
2

c v cH v e v v+ − ⋅Φ −

Тогда 

	
22

(2 ) =
2

c v cv e v
 

Φ ⋅ − 
 

и 

	
2 2

( , ) = ( , ) = .
2

c ucH u v K u v u v ve+ + −+ − −

Возвращаясь к старым переменным, получим 

	
22 ( )
2( , ) = ( ) .

4

c tcK t t e
τ

τ τ
− ++ − − 	 (10)

Легко видеть, что 

	
2 2( , )( , ) = 0, ( , ) = , = .

2 2
c dK t t cK t K t t t

dt
τ

+
+ + −

− − −

Следовательно, условия (5) справедливы.
Проверим выполнение (8): 

	 ( )
22 ( ) 22( , ) = ( ) 2 ,

8

c tcK t e c t
τ

τ τ τ
− ++ − −
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	 ( )
22 ( ) 22( , ) = ( ) 2 ,

8

c t

t
cK t e c t

τ
τ τ

− ++ − +

тогда

( )
2 22 4( ) ( )2 2 22 2( , ) ( , ) = ( 2) 2 ( ) 2 = ( ) = ( , ).

8 4

c ct t

t
c cK t K t e c c t t e c K t

τ τ

τ τ τ τ τ τ τ
− + − ++ + ++ − − + − + − −

Получаем, что (10) является ядром K +  оператора (3) при выполнении условий (5).
Рассмотрим теперь второе уравнение 
	 ( )2= ,c cL Df D c L f− −−

которое позволяет найти уравнение для ядра вида 
	 2( , ) ( , ) = ( , ).tK t K t c K tτ τ τ τ− − −+
Аналогично предыдущему случаю, находим, что общее решение последнего уравнения 

имеет вид 
	

2
( , ) = ( ),cK t e tττ τ− ⋅Φ −

где ( )sΦ  — произвольная непрерывно дифференцируемая функция и второй случай из (4) 
доказан. Кроме того, 

	
22 ( )
2( , ) = ( )

4

c tcK t t e
τ

τ τ
+− − −

является ядром K −  оператора (3) при выполнении условий (6). Доказательство закончено.
Замечание. Таким же образом доказывается, что если f  — основная функция, например, 

шварцева: ( ),f S∈ R  а Φ  — обобщенная функция, например, ( ),S ′Φ∈ R  то операторы преобра-
зования ,c

±L  удовлетворяющие тождеству 
	 2= ( ) ,c cDf D c f± ±±L L 	 (11)

где = dD
dt

, имеют вид операторов Вольтерра 

	
2 2

( )( ) = ( ) ( ) = ( ( )* ( ))( ).c c
c f t e t f d e f tτ ττ τ τ τ τ

∞
±

−∞

⋅Φ − Φ∫  L 	 (12)

В частности, можно положить ( )sΦ  равной дельта-функции: ( )= ( ).s sδΦ  Тогда 
2

( )( )= ( ).c t
c f t e f t± L  Такой вид оператора преобразование удобно использовать, если присут-

ствует начальное условие: при = 0.t
Теорема 2. Пусть A — линейный оператор, действующий по переменным 1= ( ,..., ) n

nx x x ∈R , 
а w  — решение уравнения 

	 = , = ( , ).tw Aw w w x t 	 (13)
Тогда функция 

	
2

= = ( ) ( , ) ,
t

c c
c

t

w L w e t w x dτ τ τ τ±

−

Φ −∫ 

где cL+  — оператор преобразования из теоремы 1 является решением уравнения 
	 2 = , = ( , ).c c c c c

tw c w Aw w w x t± 	 (14)
Доказательство. Покажем, что если w  удовлетворяет уравнению (13), то cw  удовлетворя-

ет уравнению (14). В силу (2), имеем 
	 2 2( ) = ( ) = = = = ,c c

t t c c t c cD c w D c L w L D w L Aw AL w Aw+ + + ++ +

получаем, что 2( ) =c c
tD c w Aw+  и cw  удовлетворяют уравнению (14)

Пример. Приведем элементарный пример. Рассмотрим задачу Коши для уравнения тепло-
проводности 
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= , = ( , );

( ,0) = ( ).
t xxw aw w w x t

w x f x




В этом случае 
2

2= .A a
x
∂
∂

 Решение этой задачи имеет вид 

	
( )

41( , ) = ( ) .
2

x
atw x t e f d

at

ξ

ξ ξ
π

∞ −
−

−∞
∫

Тогда решение возмущенной задачи 

	
2= , = ( , );

( ,0) = ( )
t xxw aw c w w w x t

w x f x
 −



будет иметь вид
( ) ( ) 22
4 41 1= = ( ) ( ) = ( ) ( ) .

2 2

x x cc c a a
c

d dw L w e t e f d f d e t
a a

ξ ξ ττ τ ττ ττ ξ ξ ξ ξ τ
π τ π τ

∞ ∞ ∞ ∞− −
− − −+ −

−∞ −∞ −∞ −∞

Φ − Φ −∫ ∫ ∫ ∫
Положим ( )= ( ),s sδΦ  тогда 

	
( ) 2

41= = ( ) .
2

x c tc at
cw L w e f d

at

ξ

ξ ξ
π

∞ −
− −+

−∞
∫

Заключение

В статье был построен простой оператор преобразования типа Векуа — Эрдейи — Лаун-
деса для первой производной, который иллюстрирует методы получения решений задач для 
возмущенного уравнения, если известно решение задачи для невозмущенного уравнения.
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УДК 517.9

МЕТОДЫ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, 
ОСНОВАННЫЕ НА ОРТОГОНАЛЬНЫХ ПОЛИНОМАХ

Воронежский государственный университет

Д. С. Копылов

Аннотация. В статье изучаются полиномы Чебышева, а также функции одной перемен-
ной, выраженные через полиномы Чебышева. Такие полиномы применяются к решению 
обыкновенных дифференциальных уравнений.
Ключевые слова: полином Чебышева, метод ортогональных полиномов, обыкновенное 
дифференциальное уравнение.

Введение

Классические ортогональные многочлены — Чебышёва, Лежандра, Эрмита, Лагерра, Яко-
би и другие — традиционно используются как мощный математический инструмент при ре-
шении задач, связанных с дифференциальными уравнениями. Они занимают важное место в 
теоретических исследованиях, математической физике, вычислительной математике и кван-
товой механике.

В данной статье рассматриваются полиномы Чебышёва [1], функции одной переменной, 
выраженные через полиномы Чебышева и применение этих полиномов к решению обыкно-
венных дифференциальных уравнений.

Полиномы Чебышева

Полиномы Чебышева первого рода ( )nT x  представляют собой полиномы, связанные с три-
гонометрическими функциями. Их можно определить несколькими эквивалентными спосо-
бами. Один из способов определения полиномов Чебышева первого рода ( )nT x  имеет вид: 

	 ( ) ( )cos = cos .nT nθ θ
Или

	 ( ) = cos( ) ,nT x nθ  где = cos( ).x nθ
Из определения видно, что 
	 ( ) ( ).n nT x T x− =
Также 
	 ( ) ( 1) ( ),n

n nT x T x− = − ,
а именно ( )nT x  является нечётной или чётной функцией переменной ,x  в зависимости от 
того, является ли n  нечётным или чётным числом, соответственно. 

Имеем 
	 ( ) ( ) ( )2 1 2(1) = 1, 1 = 1 , (0) = 0, (0) = 1 .n n

n n n nT T T T+− − −
Полиномы Чебышева { ( )}nT x  образуют последовательность полиномов, ортогональных с 

весовой функцией 
	

21
dx

x−
на интервале ( 1,1),−  а именно 

	 ( ) ( )
1

l l 21
, = .

1
k kw

dxT T T x T x
x− −

∫
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Ненулевые значения этиз интегралов, при ,l k=  определяются выражением

	 ( )( )1 2
0 21

d = ,
1

xT x
x

π
− −
∫

	 ( )( )1 2

21

d = , 0
21

k
xT x k
x

π
−

≠
−

∫
Для полиномов Чебышева первого рода справедливы следующие рекуррентные соотношения: 
	 0 1 1 1( ) = 1, ( ) = , ( ) = 2 ( ) ( ).n n nT x T x x T x xT x T x+ −−

Из этих соотношений следует, что многочлены могут быть определены в явном виде через 
определитель трёхдиагональной матрицы размера n n×  вида

	

1 0 0
1 2 1 0

( ) det .0 1 2
1

0 0 1 2

n

x
x

T x x

x

 
 
 
 =
 
 
  





 

   



Несколько первых полиномов Чебышёва первого рода имеют вид:

	

0

1
2

2
3

3
4 2

4
5 3

5
6 4 2

6
7 5 3

7
8 6 4 2

8

( ) = 1,
( ) = ,
( ) = 2 1,
( ) = 4 3 ,
( ) = 8 8 1,
( ) = 16 20 5 ,
( ) = 32 48 18 1,
( ) = 64 112 56 7 ,
( ) = 128 256 160 32 1.

T x
T x x
T x x
T x x x
T x x x
T x x x x
T x x x x
T x x x x x
T x x x x x

−

−

− +

− +

− + −

− + −

− + − +
Полином ( )nT x  имеет на отрезке [ 1,1]−  ровно n  корней, расположенных в точках

 	

1
2= cos · , = 0,1, , 1k

k
x k n

n
π

  +     −
 
 
 



Любую функцию ( ),f x  определённую на отрезке [ 1,1]−  можно приблизить следующей 
формулой: 

	 ( ) ( )

1

0
=0

1· ·
2

N

j j x
j

f x c T c
−

≈ −∑
где 

	 ( ) ( )
1 1

=0 =0

1 1
2 2 2 2= · · = · cos · ·cos ·

N N

j k j k
k k

k k
c f x T x f j

N N N N
π π

− −
    + +    
    
         

∑ ∑

при 0,1, , 1,j N= −  которая в точности верна для всех x ,являющихся корнями многочлена 
( ).NT x
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Для производных полинома Чебыщёва справедливо рекуррентное соотношение

	 1 1
1 12 ( ) = ( ) ( ), 2,3,...

1 1n n n
d dT x T x T x n

n dx n dx+ −− =
+ −

Общая формула для производной многочлена Чебышёва при 1x = ±  имеет вид: 

	 ( ) ( ) ( )
( )

2 21

=0= 1

1 · .
2· 1

p p
n pn

p
kx

n kd T x
dx k

−
+

±

 − 
 ±   +   

∏
Эта формула очень полезна при численном решении задач на собственные значения.

Функции одной переменной, выраженные через полиномы Чебышева

Пусть функция ( )f x  выражается в виде равномерно сходящегося ряда полиномов Чебы-
шева в виде

	 ( )
( )

( ) ( ) ( )0 1 21 2
=0

1= ' · = · · · ,
2k k x x x

k
f x a T a a T a T

∞

+ + +∑ 

где сейчас и в дальнейшем обозначение ( )=0
'

k

∞∑  указывает, что при суммировании первое сла-

гаемое следует брать в виде 0
1
2

a  а не в виде 0 .a  Коэффициенты na  разложения функции по 

полиномам Чебышева определяются формулой

	 ( ) ( ) ( )( ) ( )
1

21 0

2 2= · = · cos ·cos · .
1

n
n

f x T x
a dx f t n t dt

x

π

π π− −
∫ ∫

Рассмотрим пример разложений функций по полиномам Чебышева. Разложение ln(1 )x+  
имеет вид

	 ( )
( )=0

ln 1 = ' · ( ),k k
k

x a T x
∞

+ ∑
где

	 ( ) ( ) ( ) ( )
1

21 0

2 2= · ln 1 · = · ln 1 c ( ) cos .
1
k

k

T x
a x dx os t kt dt

x

π

π π−
+ +

−
∫ ∫

Справедливы формулы
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
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Решение обыкновенных дифференциальных уравнений 
с полиномиальными коэффициентами

Рассмотрим решение линейного дифференциального уравнения второго порядка,

	 ( ) ( ) ( ) ( )
2

2· · · = , 1 1d y dya x b x c x y g x x
dx dx

+ + − ≤ ≤ 	 (1)

с использованием рядов, выраженных через полиномы Чебышева.
Коэффициенты ( ),a x  ( ),b x  ( )c x  являются полиномами от .x  В случае, когда они представ-

ляют собой квадратные трехчлены и линейные функции, уравнение (2) включает в себя мно-
гие известные дифференциальные уравнения, связанные со специальными функциями мате-
матической физики, такими как гипергеометрические функции, функции Бесселя, функции 
Эйри и другие. Функция ( )g x  в правой части уравнения является любой функцией, которая 
имеет сходящееся разложение в терминах полиномов Чебышева. Линейная замена перемен-
ной может быть использована для преобразования задачи на произвольном конечном интер-
вале a x b≤ ≤  в стандартный интервал 1 1.x− ≤ ≤

Мы будем рассматривать те дифференциальные уравнения, которые могут быть решены в 
равномерно сходящихся рядах. Опишем метод решения обыкновенных дифференциальных 
уравнений вида (1) посредством рядов по полиномам Чебышёва. Отметим, что конечные сум-
мы таких рядов могут быть использованы для аппроксимации таких решений рядов.

Основная идея решения уравнения (1) заключается в представлении этого решения в виде 
ряда по известным базисным функциям, в нашем случае – по полиномам Чебышёва. Приме-
нение именно этих полиномов обусловлено их высокими интерполяционными свойствами.

Решение уравнения (1) будем искать в виде:

	 ( ) ( ) ( ) ( )0 1 1 2 2
=0

1= ' · = · · ·
2k k

k
y x a T x a a T x a T x

∞   + + + 
 

∑ 

Также будем считать, что правая часть уравнения (1) разложима в ряд по полиномам Че-
бышёва 

	 ( ) ( )
=0

= ' · .k k
k

g x g T x
∞

∑
Производные от ( )y x  порядка 0,1,2,r =   задаются формулами:

	 ( ) ( ) ( )
=0

= ' · .r r
k k

k
y x a T x

∞

∑
Затем, применение конкретных коэффициентов уравнения (1), а также рекуррентных со-

отношений позволяет найти соотношения между коэффициентами ряда, в который разложе-
но решение и найти их.

Чаще всего приближение непрерывных функций ограничивается определенным фиксиро-
ванным числом n  ряда Чебышёва, за счёт отбрасывания компонент с такими ( ),kT x  ,k n>  ве-
личина которых мала. В отличие от приближений, полученных с помощью других степенных 
рядов, приближение с помощью многочленов Чебышёва минимизирует число членов, необхо-
димых для приближения функции многочленами с заданной точностью. С этим связано и то 
свойство, что приближение, основанное на ряде Чебышёва, оказывается довольно близким к 
наилучшему равномерному приближению (среди многочленов одинаковой степени), но при 
этом его проще вычислить. Кроме того, оно позволяет избавиться от эффекта Гиббса при раз-
умном выборе точек интерполяции.
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Заключение

В статье рассмотрены полиномы Чебышёва первого и второго рода, их свойства, рекур-
рентные соотношения и производящие функции. Показано, как функции одной переменной 
можно разложить в ряды по полиномам Чебышёва, включая примеры приближённых разло-
жений. Также была изложена методика решения линейных обыкновенных дифференциаль-
ных уравнений второго порядка с полиномиальными коэффициентами с использованием раз-
ложений по полиномам Чебышёва.
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УДК 517.9

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ СТОХАСТИЧЕСКИХ 
ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ: МЕТОД ЭЙЛЕРА — МАРУЯМЫ 

И ЕГО ПРИЛОЖЕНИЕ К ФИНАНСОВОЙ МАТЕМАТИКЕ

Воронежский государственный университет

А. В. Кузнечиков

Аннотация. В статье рассматриваются прикладные аспекты решения стохастических 
дифференциальных уравнений (СДУ) с использованием численных методов. Основное 
внимание уделено методу Эйлера — Маруямы, который является стохастическим ана-
логом классического метода Эйлера. Приводится построение метода, его обоснование и 
демонстрация применения для модели геометрического броуновского движения, широко 
используемой в финансовой математике для описания динамики цен активов.
Ключевые слова: стохастическое дифференциальное уравнение, винеровский процесс, 
метод Эйлера — Маруямы, численное решение, геометрическое броуновское движение.

Введение

Стохастические дифференциальные уравнения (СДУ) являются мощным инструментом 
для математического моделирования систем, подверженных случайным воздействиям. В от-
личие от детерминированных моделей, СДУ позволяют учитывать внутренние флуктуации и 
внешние шумы, что делает их незаменимыми в таких областях, как физика [1], биология [2], и, 
особенно, в финансовой математике [3].

Одной из фундаментальных моделей в финансах является модель геометрического броу-
новского движения, лежащая в основе знаменитой модели Блэка — Шоулза для оценки опци-
онов [4]. Эта модель описывается линейным СДУ вида:

	 0( ) ( ) ( ) ( ), (0) ,dS t S t S t dW t S Sµ σ= + =

где ( )S t  — цена актива в момент времени ,t  µ  — средняя доходность (дрейф), σ  — волатиль-
ность, а ( )W t  — стандартный винеровский процесс (броуновское движение).

Аналитическое решение этого уравнения известно и выражается формулой:

	
2

0( ) exp ( ) .
2

S t S t Wt tσµ σ
  

= − +  
  

Однако для многих нелинейных или многомерных СДУ аналитические решения недоступ-
ны, что делает численные методы основным инструментом их исследования.

Цель данной работы — проиллюстрировать применение метода Эйлера — Маруямы, одно-
го из простейших и наиболее популярных численных методов решения СДУ, к модели геоме-
трического броуновского движения.

Винеровский процесс

В основе большинства СДУ лежит винеровский процесс ( ),W t  который можно определить 
следующими свойствами [1, 5]:

1.  ( ) 0W t =  почти наверное
2.  ( )W t  имеет непрерывные траектории 
3.  ( )W t  имеет независимые приращения
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4. Приращения ( ) ( )W t W s−  при t s>  распределены нормально с нулевым средним и дис-
персией : ( ) ( ) ~ (0, ).t s W t W s N t s− − −

Формально винеровский процесс можно представить как интеграл от белого шума ( ):tξ

	
0

( ) ( )
t

W t s dsξ= ∫
хотя в строгом смысле белый шум является обобщенной производной винеровского процесса. 
Необходимо использовать исчисление Ито, в котором ключевую роль играет следующее пра-
вило [5]:

	 2( ( )) .dW t dt=
Это правило, на первый взгляд противоречащее классическому анализу, является след-

ствием конечной квадратической вариации винеровского процесса.

Стохастические дифференциальные уравнения и исчисление Ито

Рассмотрим СДУ в общей форме Ито:
	 ( ) ( , ( ) ) ( , ( )) ( ),dX t a t X t dt b t X t dW t= +

где ( , )a t x  — коэффициент сноса (дрейфа), ( , )b t x  — коэффициент диффузии.
Из-за немонотонности и неограниченной вариации траекторий винеровского процесса, 

классическое исчисление неприменимо. Необходимо использовать исчисление Ито, в котором 
ключевую роль играет следующее правило [5]:

	 2( ( )) .dW t dt=
Данное правило является формальной записью результата вычисления квадратической ва-

риации винеровского процесса, которая равна [ , ] .tW W t=  Оно показывает, что дифференциал 
( )dW t  имеет порядок ( ),dt  что и обуславливает отличие исчисления Ито от классического.

Стохастические дифференциальные уравнения в форме Ито и Стратоновича

Важно отметить, что помимо формы Ито, существует альтернативное представление 
СДУ — форма Стратоновича. Уравнение в форме Стратоновича:

	 ( ) ( , ( )) ( , ( )) ( ),dX t a t X t dt b t X t dW t= + 

где интеграл от стохастического члена интерпретируется как предел сумм в средней точке.
Преимущество формы Стратоновича заключается в том, что для нее действуют классиче-

ские правила дифференцирования, как в детерминированном анализе. Однако в приложени-
ях чаще используется форма Ито, поскольку она обеспечивает марковское свойство решений 
и упрощает вычисление математических ожиданий.

Переход между формами Ито и Стратоновича осуществляется с помощью поправки:

	 1 .
2

ba a b
x
∂ = −  ∂ 

Èòî Ñòðàòîíîâè÷

Метод Эйлера — Маруямы

Пусть дано СДУ:
	 0( ) ( , ( )) ( , ( )) ( ), (0) .dX t a t X t dt b t X t dW t X X= + =
Для его численного решения на интервале [0, ]T  введем равномерную сетку с шагом, 

,h t T N= ∆ =  где N  — число шагов. Обозначим ,nt nh=  ( ).n nX X t≈
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Метод Эйлера — Маруямы имеет вид [6]:
	 1 ( , ) ( , ) , 0,1, , 1,n n n n n n nX X a t X h b t X W n N+ = + + ∆ = −

где 1( ) ( )n n nW W t W t+∆ = −  — приращение винеровского процесса на n-м шаге. В силу свойств 
винеровского процесса, nW∆  — независимые случайные величины, распределенные по нор-
мальному закону: ~ (0, ).nW N h∆  Таким образом, nW∆  можно моделировать как, ,nhZ  где

~ (0,1)nZ N .
Метод Эйлера — Маруямы имеет сильный порядок сходимости 0.5 и слабый порядок схо-

димости 1.0 [6]. Сильная сходимость характеризует среднюю ошибку отдельной траектории, 
а слабая — ошибку в распределении. Это означает, что для достижения приемлемой точности 
может потребоваться небольшой шаг дискретизации, особенно в задачах с высокой волатиль-
ностью. Несмотря на невысокий порядок сильной сходимости, метод широко применяется на 
практике благодаря своей простоте и устойчивости

Повысить точность моделирования позволяет метод Милштейна, который учитывает вто-
рые производные коэффициента диффузии. Его разностная схема для СДУ в форме Ито имеет 
вид:

	 2
1 ( , ) ( , ) 0.5 ( , ) ( , ) [( ) ].n n n n n n n n n n n n

bX X a t X h b t X W b t X t X W h
x+

∂ = + + ∆ + ∆ − ∂ 
  

Данный метод имеет сильный порядок сходимости 1.0, что делает его более точным, одна-
ко он требует вычисления производной и несколько сложнее в реализации.

Модель геометрического броуновского движения

Рассмотрим модель динамики цены актива ( ):S t
	 0( ) ( ) ( ) ( ), (0) .dS t S t dt S t dW t S Sµ σ= + =
Применим к ней метод Эйлера — Маруямы. В данном случае ( , ) ,a t S Sµ=  ( , ) .b t S Sσ=  Раз-

ностная схема принимает вид:
	 1 , 0,1, , 1.n n n n nS S S h S W n Nµ σ+ = + + ∆ = −

Алгоритм решения

Численное решение модели геометрического броуновского движения методом Эйлера — 
Маруямы включает следующие этапы:

1. Задание параметров: 0 , , , , .S T Nµ σ
2. Вычисление шага дискретизации: .h T N=
3. Инициализация массива цен: 0[0] .S S=
4. Для каждого временного шага:

– Генерация случайной величины ~ (0,1).Z N
– Вычисление приращения винеровского процесса: .W h Z∆ = 

– Обновление цены актива по схеме Эйлера — Маруямы.

Заключение

В работе продемонстрирована эффективность метода Эйлера — Маруямы для числен-
ного решения стохастических дифференциальных уравнений на примере фундаментальной 
модели финансовой математики — геометрического броуновского движения. Несмотря на 
невысокий порядок сильной сходимости, метод остается одним из наиболее популярных ин-
струментов в прикладных исследованиях. Это объясняется его простотой, легкостью реали-
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зации и понимания, что делает его идеальным для начального изучения и моделирования 
стохастических систем.

Ключевое преимущество метода Эйлера — Маруямы проявляется в задачах, требующих мас-
совых вычислений, таких как методы Монте-Карло для оценки финансовых производных ин-
струментов. В таких случаях, когда необходимо быстро сгенерировать огромное количество тра-
екторий для получения статистически надежных результатов, вычислительная эффективность 
и простота метода оказываются важнее высокой точности каждой отдельной реализации.

Для задач, требующих большей точности при моделировании единичных траекторий, мо-
гут быть использованы более сложные методы, такие как метод Милштейна или методы Рун-
ге — Кутты для СДУ.

Проведенное исследование подчеркивает важность численных методов как моста между 
сложными аналитическими моделями, описывающими реальные процессы со случайностями, 
и их практическим применением в анализе и прогнозировании. Метод Эйлера — Маруямы, 
являясь таким «рабочим солдатом» стохастического моделирования, наглядно демонстрирует 
этот принцип.
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ОПТИМАЛЬНАЯ ПОЛНАЯ ПАРА МАТРИЧНЫХ КОРНЕЙ
КВАДРАТИЧНОГО МАТРИЧНОГО ПУЧКА

Воронежский государственный университет

В. Г. Курбатов, И. В. Курбатова

Аннотация. Рассматривается линейное дифференциальное уравнение второго порядка 
с постоянными матричными коэффициентами. Характеристической функцией такого 
уравнения называют многочлен второго порядка с матричными коэффициентами, а его 
матричные решения — корнями. Пару корней называют полной, если их разность явля-
ется обратимой матрицей. Известно, что общее решение дифференциального уравнения 
выражается через матричные экспоненты от любых двух корней, образующих полную 
пару. Обсуждается задача выбора полной пары корней, приводящая к минимальным 
ошибкам округления.
Ключевые слова: линейное дифференциальное уравнение второго порядка с постоян-
ными матричными коэффициентами, матричная экспонента, корень матричного пучка, 
полная пара матричных корней, жорданова цепь.

Введение

Настоящий доклад подготовлен на основе статьи [16].
Характеристической функцией дифференциального уравнения второго порядка
	 ( ) ( ) ( ) ( ),x t Bx t Cx t f t′′ ′+ + = 	 (1)

является матричный многочлен или пучок
	 2( ) ,L I B Cλ λ λ= + +        .Cλ∈ 	 (2)
Матричное решение уравнения
	 2 0X BX C+ + =

называют (матричным) корнем пучка. Говорят, что два корня X  и Z  образуют полную пару, 
если матрица X Z−  обратима. Имея полную пару, решение уравнения (1) с начальными усло-
виями

	
(0) ,
(0)

x u
x v

=
′ =

можно записать в виде

	
0

( ) ( ) ( )( ) ( ) ( ) ,
t

x t U t u U t u Bv U t s f s ds′= + + + −∫
где

	
1

1

( ) ( )( ) ,
( ) ( )( ) .

Xt Zt

Xt Zt

U t e e X Z
U t Xe Ze X Z

−

−

= − −

′ = − −
	 (3)

Таким образом, решение дифференциального уравнения сводится к нахождению двух ма-
тричных экспонент Xte  и .Zte  Эта идея впервые была сформулирована в [2] и в дальнейшем 
обсуждалась многими авторами, см., например, [3–9, 17–20].

Мы ограничиваемся рассмотрением матриц B  и C  небольшого размера (около 10 10×  или 
чуть больше). Только в этом случае представление матричной экспоненты в виде формулы, 
зависящей от переменной времени, является не слишком громоздким и может эффективно 
использоваться. В то же время, множество всех пар корней X  и Z  может быть посчитано за 
разумное время примерно для тех же размеров B  и C. Оказывается, не все пары X  и Z  рав-
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ноценны: некоторые матричные операции, которые приходится выполнять для вычислений 
по формулам (3), могут оказаться плохо обусловленными; например, число обусловленности 

1( ) || || || ( ) ||X Z X Z X Zκ −− = − ⋅ −  может оказаться большим, что приведет к большим ошибкам 
округления при вычислениях по формулам (3).

Работ, посвященных приближенному нахождению корней пучков много, см., например, 
[1, 10, 12–15, 21–22]. Задача о выборе оптимальной пары рассматривалось в работе [16].

Теорема 1 (достаточное условие полноты, [4, 11]). Пусть X  и Z  — произвольная пара кор-
ней пучка (2). Если спектры ( )Xσ  и ( )Zσ  не пересекаются, то корни X  и Z  образуют пол-
ную пару.

1. Жордановы цепи

Рассмотрим матричный пучок (2). Блочную матрицу

	 1

0 I
C

C B
 

=  − − 
называют присоединенной к пучку (2).

Напомним, что набор векторов 0 1, ,..., kh h h  0( 0)h ≠  называют жордановой цепью длины 1k +  
для матрицы ,D  соответствующей собственному значению 0 ,Cλ ∈  если выполняются равенства

	

0 0

1 1 0

1

,
,

.........................
.k k k

Dh h
Dh h h

Dh h h

λ
λ

λ −

=
= +

= +
Говорят, что жорданова цепь максимальна, если ее нельзя расширить до большей.
Набор векторов 0 1, ,..., kx x x  0( 0)x ≠  называют жордановой цепью длины 1k +  для пучка (2), 

соответствующей 0 ,Cλ ∈  если выполняются равенства

	

0 0

0 1 0 0

0 0 0 1 0

0 0 1 2

( ) 0,
( ) (2 ) 0,
( ) (2 ) 0,

.................................................,
( ) (2 ) 0.k k k

L x
L x I B x
L x I B x x

L x I B x x

λ
λ λ
λ λ

λ λ − −

=
+ + =
+ + + =

+ + + =
Предложение 2 [4]. Всякая жорданова цепь 0 1, ,..., kx x x  0( 0)x ≠  корня X  одновременно яв-

ляется жордановой цепью пучка (2), соответствующей тому же 0.λ

2. Нахождение матричных корней

Обозначим через span D  линейную оболочку столбцов матрицы .D
Теорема 3 [4, 11]. Матрица X  является корнем пучка (2) тогда и только тогда, когда под-

пространство 
I

M span
X

 
=  

 
 инвариантно относительно присоединенной матрицы 1.C

Предложение 4. Подпространство M  инвариантно относительно матрицы D тогда и 
только тогда, когда M  является линейной оболочкой нескольких жордановых цепей матрицы .D

Теорема 3 позволяет предложить алгоритм нахождения корня. Сначала вычислим жорда-
нову форму присоединенной матрицы

	 1

0
.

I
C

C B
 

=  − − 
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Берем несколько жордановых цепочек так, чтобы общее количество векторов было равно 
.n  Запишем эти векторы в виде столбцов блочной матрицы (с блоками 1X  и 2X  размеров n n× )

	 1

2

.
X
X

 
 
 

Умножим эту блочную матрицу справа на 1
1X −  (предполагается, что 1

1X −  существует):

	
I
X

 
 
 

 = 
1

1 1
1

2 1

.
X X
X X

−

−

 
 
 

По теореме 3 получится матричный корень
	 1

2 1 .X X X −=

3. Нахождение полных пар матричных корней

Теорема 5. Матрицы X и Z  образуют полную пару корней пучка (2) тогда и только тогда, 

когда подпространства 1

I
M span

X
 

=  
 

 и 2

I
M span

Z
 

=  
 

 инвариантны относительно присое-

диненной матрицы 1C  и порождают разложение арифметического комплексного простран-
ства 2nC  в прямую сумму 2

1 2.nC M M= ⊕
Предложение 6. Пусть 2 2n nD C ×∈  — произвольная матрица, а 2

1 2
nM M C⊆,  — два подпро-

странства.
Если подпространства 1M  и 2M  инвариантны относительно присоединенной матрицы 

1C  и образуют разложение 2nC  в прямую сумму 2
1 2

nC M M= ⊕ ,  то существует жорданово 
представление матрицы 1C ,  каждая жорданова цепочка которого содержится либо в 1M ,  либо 
в 2.M

Обратно, если существует жорданова представление матрицы 1C ,  каждая жорданова це-
почка которого содержится либо в 1M ,  либо в 2M ,  то подпространства 1M  и 2M  инвариан-
ты относительно 1C  и образуют разложение 2nC  в прямую сумму 2

1 2.nC M M= ⊕
Теоремы 3 и 5 вместе с предложениями 4 и 6 позволяют предложить алгоритм нахождения 

всех полных пар. Вначале берем жорданово разложение присоединенной матрицы 1,C  разби-
ваем множество его жордановых цепочек на две части так, чтобы число векторов в каждой 
части равнялось ,n  определяем 1M  и 2M  как линейные оболочки этих частей. Затем с помо-
щью теоремы 3 конструируем корни X  и ,Z  соответствующие этим подпространствам. По 
теореме 5 получится полная пара. Перебирая всевозможные разбиения всех жордановых це-
почек на две части, мы получим все полные пары матричных корней X  и .Z  Рекомендуется 
помещать жордановы цепочки, соответствующие одному и тому же собственному значению 
(а также очень близким собственным значениям), в одну часть.

Благодаря ошибкам округления, в практических вычислениях кратные собственные значе-
ния не появляются. В этой ситуации возникает 2

n
nC  пар полных корней. Перебрать все полные 

пары удается только для небольших n; например, 10
20 184756,C =  12

24 2704156.C =
Мы перебираем много пар полных корней, поскольку некоторые из них оказываются неу-

добными. Например, формула (3) использует умножение на матрицу, которая может оказаться 
плохо обусловленной, т. е. число обусловленности

	 1( ) || || || ( ) ||X Z X Z X Zκ −− = − ⋅ −
может оказаться большим. В общем случае большими могут оказаться также числа обуслов-
ленности

	 1 1( ), ( ), ( ), ( ), ( ),X Z X Z X Zκ κ κ κ κ −
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участвующие в промежуточных вычислениях. Наибольшее из этих чисел мы обозначаем через 
max .κ  Мы рекомендуем использовать ту полную пару, для которой число maxκ  является наи-

меньшим. Численные эксперименты показывают, что различие между maxκ  для различных пар 
может доходить до 1210 .
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ПРИМЕНЕНИЕ ЧИСЛЕННЫХ МЕТОДОВ ДРОБНЫХ ДИФФЕРЕНЦИАЛЬНЫХ 
УРАВНЕНИЙ В ПРИЛОЖЕНИЯХ ДЛЯ МАТЕМАТИЧЕСКОЙ БИОЛОГИИ

МИРЭА – Российский технологический университет

И. С. Левенец

Аннотация. В работе рассматриваются современные численные методы решения дроб-
ных дифференциальных уравнений и их приложения в математическом моделировании 
биологических процессов. Представлен анализ методов конечных разностей высоко-
го порядка точности и метода Рунге — Кутты для дробных производных. Исследована 
сходимость и устойчивость предложенных схем. Приведены примеры применения раз-
работанных методов для моделирования динамики популяций с учетом наследственных 
эффектов и запаздывания. Численные эксперименты демонстрируют эффективность и 
точность предложенных подходов.
Ключевые слова: дробные дифференциальные уравнения, численные методы, произ-
водная Капуто, математическая биология, динамика популяций, метод Рунге — Кутты 
четвертого порядка, устойчивость численных схем, модель хищник – жертва, эпидемио-
логические модели, дифференциальные уравнения с запаздыванием, математическое мо-
делирование, сходимость методов, эффекты памяти, логистическое уравнение, модель SIR.

Введение

Теория дифференциальных уравнений является одним из фундаментальных разделов со-
временной математики, имеющим широкие приложения в естественных науках, технике и 
экономике. За последние два десятилетия особый интерес исследователей привлекли дробные 
дифференциальные уравнения (ДДУ), которые предоставляют более гибкий математический 
аппарат для описания процессов с памятью и наследственными свойствами [2]. 

Дробное исчисление расширяет классическое понятие производной и интеграла на неце-
лые порядки, что позволяет более точно моделировать явления в различных областях: от рео-
логии вязкоупругих материалов до распространения эпидемий [2, 3]. В отличие от обыкновен-
ных дифференциальных уравнений, ДДУ учитывают всю предысторию системы, что делает их 
особенно подходящими для описания биологических процессов [4, 5].

Математическая постановка задачи. Рассмотрим дробную производную Капуто порядка 
( )α ∈ 0,1  функции ( ).f t
	

0)
( ) 1 '( ) ,

(1 ( )

t
C

t
f sD f t ds
t s

α
αα

=
Γ − −∫ 	 (1)

где ( )Γ   — гамма-функция Эйлера. Производная Капуто обладает важным свойством: для 
постоянной функции 0,C a

tD C =  что согласуется с физической интерпретацией и упрощает 
формулировку начальных условий [3].

Рассмотрим задачу Коши для дробного дифференциального уравнения:

	
0

( ) ( , ( )), [0, ]
,

(0)

C
tD y t f t y t t T

y y

α = ∈


=
	 (2)

где :[0, ] n nf T × →   — достаточно гладкая функция, 0
ny ∈  [9].

Теорема 1. Пусть функция ( , )f t y  удовлетворяет условию Липшица по второму аргументу 
с константой L в области [0, ] .nT ×  Тогда задача Коши имеет единственное решение [0, ].y C T∈

Численные методы. Введем равномерную сетку { , 0,1..., ; }
h nt nh n N Nh Tω = = = =  на отрезке 

[0, ].T  Дискретизация дробной производной Капуто основана на интегральном представлении:
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1

( )
1

0
( ) ( ) ( ) ,

(2 )n

n
C

t n j n j n j
j

hD y t b y t y t
α

α α

α

− −

− − −
=

≈ −
Γ − ∑ 	 (3)

где коэффициенты ( ) 1 1( 1)jb j jα α α− −= + −  [9, 11].
Теорема 2. Схема Эйлера для ДДУ имеет порядок точности ( )O h  при (0,1).a∈
Модифицированный метод Рунге — Кутты. Для повышения порядка точности предлага-

ется модифицированная схема Рунге — Кутты четвертого порядка для дробных уравнений [12].
	 1 ( , ),

n nk amp f t y= 	 (4)

	 2 1; , ,
2 2 ( 1)n n
h hk amp f t y k

α

α
 

= + + Γ + 
	 (5)

	 3 2; , ,
2 2 ( 1)n n
h hk amp f t y k

Ã

α

α
 

= + + + 
	 (6)

	 4 3; , ,
( 1)n n
hk amp f t h y k
α

α
 

= + + Γ + 
	 (7)

	 1 1 2 3 4; ( 2 2 ).
6 ( 1)n n

hy amp y k k k k
α

α+ = + + + +
Γ +

	 (8)

Теорема 3. При достаточной гладкости правой части модифицированная схема Рунге — 
Кутты имеет порядок точности 4( )O h  для α  дробных уравнений [9, 10].

Анализ устойчивости. Исследуем устойчивость разностной схемы для линейного тестово-
го уравнения ,C

tD y yα λ=  Cλ∈  [9].
Теорема 4. Модифицированная схема Рунге — Кутты безусловно устойчива для при (0,1).α ∈

Приложения к математической биологии

Модуль популяционной динамики с памятью. Рассмотрим модель логистического роста 
популяции с дробной производной [4, 5].

	 0
( )( ) ( ) 1 , (0)C

t
N tD N t N t N N
K

α τ  = − = 
 

,	 (9)

где ( )N t  — численность популяции в момент времени ,t  τ  — коэффициент воспроизводства, 
K  — ёмкость среды, (0,1)α ∈  — порядок дробной производной, характеризующий эффект 
памяти [7].

Модуль хищник-жертва с запаздыванием. Обобщим классическую модель Лотки — Воль-
терра, включив дробные производные и запаздывание [4, 6]:

	
( ) ( ) ( ) ( )

,
( ) ( ) ( ) ( )

C
t

C
t

D x t ax t bx t y t
D y t cy t dx t y t

α

β

τ
τ

 = − −


= − + −
	 (10)

где ( )x t  и ( )y t  — численности жертвы и хищника соответственно, τ  — время запаздывания, 
, (0,1)α β ∈  — порядки дробных производных [6].

Анализ устойчивости. Исследование положений равновесия системы проводится мето-
дом линеаризации с использованием характеристического квазиполинома [4, 6].

	 2
1 3( ) ( ) ( ) .p e p eα β β λτ λτλ λ τ λ τ+ − −∆ = + + 	 (11)

Теорема 5. Положение равновесия ( , )x y∗ ∗  асимптотически устойчиво, если все корни ха-
рактеристического уравнения ( ) 0λ∆ =  имеют отрицательные вещественные части [6].

Модель распространения эпидемии. Рассмотрим дробную модель SIR (восприимчивые- 
инфицированные-выздоровевшие.
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D R t I t

α

α

α

β
β γ
γ

 = −
 = −
 =

	 (12)

где ( ),S t  ( ),I t  ( )R t  — доли восприимчивых, инфицированных и выздоровевших соответ-
ственно, β  — коэффициент контакта, γ  — скорость выздоровления.

Результаты численных экспериментов

Базовое репродуктивное число

	 ( ) 0
0

(1 ) .
(1 2 )

S ÃR
Ã

α β α
γ α

+
=

+
 	 (13)

Параметр α  — порядок дробной производной Капуто, β  — коэффициент передачи ин-
фекции, 0S  — начальная численность восприимчивой популяции, γ  — коэффициент выздо-
ровления. Γ  — гамма-функция, которая обобщает факториал на нецелые значения. Эта фор-
мула связана с формулой (2) из статьи, определяющей базовое репродуктивное число в 
классической эпидемиологии.

Численные эксперименты. Рассмотрим тестовую задачу.
	 1 2( ) (3) (3 ) ( ), (0) 0.C

tD y t t y t yα αα − −= Γ Γ − − = 	 (14)
Здесь C

tDα  обозначает дробную производную Капуто порядка, которая обобщает класси-
ческую производную на нецелые порядки. Эта форма уравнения применяется в модификации 
классического SIR-уравнения из формулы (3) для учета эффектов памяти в процессе распро-
странения инфекции.

Точное решение:

	 2 2 (3)( ) .
(3 )

y t t t α

α
− Γ

= −
Γ −

	 (15)

В табл. 1 приведены значения максимальной ошибки max max ( )n nE y t y= −  для различных 
значений шага сетки h  и порядка 0.5.α =

Таблица 1
Значение максимальной ошибки

Наименование 0.1h = 0.05h = 0.025h = Порядок
Метод Эйлера 22.45 10−× 21.28 10−× 36.51 10−× 0.98
Рунге — Кутты(RK4) 43.21 10−× 52.08 10−× 61.34 10−× 3.96

Модель популяционной динамики. Решим задачу с параметрами 2( ).O N
Сравнение с классической моделью. При 1α =  получается стандартное логистическое 

уравнение с решением:

	
0

0

0

( ) .
( ) t

KNN t
N K N e τ−=

+ −
	 (16)

Модель хищник-жертва. Численное моделирование системы с параметрами: 1.0,a =  0.5,b =  
0.75,c =  0.25,d =  0.9,α β= =  0.5.τ =
Фазовый портрет. Численные расчеты показывают, что при малых значениях запаздыва-

ния система стремится к устойчивому равновесию. При увеличении τ  возникает бифуркация 
Хопфа и появляются устойчивые периодические решения (предельные циклы).

Влияние порядка производной. При уменьшении α  и β  амплитуда колебаний снижает-
ся, что демонстрирует стабилизирующее влияние эффектов памяти на динамику системы.
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Сравнительный анализ методов. Результаты сравнения вычислительной эффективности 
рассмотренных методов приведены в табл. 2.

Таблица 2
Сравнительные характеристики численных методов

Характеристика Эйлер RK4 Адамс — Башфорт
Порядок точности 22.45 10−× 21.28 10−× 36.51 10−×
Время расчета 43.21 10−× 52.08 10−× 61.34 10−×
Объем памяти ( )O N ( )O N 2( )O N
Устойчивость Условная Безусловная Условная

Заключение

Теоретические аспекты. Разработанные численные методы позволяют эффективно решать 
широкий класс дробных дифференциальных уравнений, возникающих в математической био-
логии. Доказанные теоремы о сходимости и устойчивости обеспечивают надежную теорети-
ческую основу для применения методов.

Ключевым преимуществом дробных моделей является естественное включение эффектов 
памяти и наследственности, что особенно важно для биологических систем. Параметр высту-
пает как мера влияния предыстории системы и может определяться из экспериментальных 
данных.

Практические приложения. Численные эксперименты демонстрируют применимость раз-
работанных методов к реальным задачам популяционной динамики и эпидемиологии. Дроб-
ные модели позволяют более точно описывать наблюдаемые явления, такие как:

1. Замедленный рост популяций в условиях ограниченных ресурсов.
2. Затухающие колебания в системах хищник-жертва.
3. Субэкспоненциальное распространение эпидемий.
Сравнение с существующими подходами. По сравнению с классическими ОДУ-моделями, 

дробные дифференциальные уравнения: учитывают эффекты памяти и наследственность, 
имеют более гибкое описание динамики, имеют лучшее соответствие экспериментальным 
данным.

Таким образом, разработаны и исследованы численные методы высокого порядка точно-
сти для решения дробных дифференциальных уравнений с приложениями к задачам матема-
тической биологии. Основные результаты включают:

1. Построена модифицированная схема Рунге — Кутты четвертого порядка для дробных 
производных Капуто, доказаны теоремы о сходимости и устойчивости метода.

2. Разработан алгоритм численного решения систем дробных дифференциальных уравне-
ний с запаздыванием, реализованный в виде программного комплекса.

3. Проведено математическое моделирование биологических систем: популяционной дина-
мики, взаимодействия хищник-жертва и распространения эпидемий. Показано, что дробные 
модели обеспечивают более адекватное описание наблюдаемых явлений.

4. Численные эксперименты подтвердили теоретические оценки порядка точности и про-
демонстрировали эффективность предложенных методов.
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УДК 517.9

РЕШЕНИЕ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ 
ДЛЯ ПОЛУПЛОСКОСТИ С НАКЛОННОЙ ТРЕЩИНОЙ

Воронежский государственный университет

Е. А. Логинова, А. С. Рябенко, А. С. Черникова

Аннотация. Изучается краевая задача о стационарной распределении тепла в полупло-
скости с конечной трещиной, наклонной к границе полуплоскости и подходящей одним 
концом к указанной границе. Задаются условия на температуру на границе полуплоско-
сти, разницы температур и тепловых потоков при переходе через берега трещины. Задача 
сводится к обобщенной, что позволяет построить её решение в пространстве обобщен-
ных функций. Решение исходной задачи получено в интегральном виде с использованием 
функций Макдональда — Бесселя.
Ключевые слова: краевая задача, неоднородная полуплоскость, материал с трещиной, 
стационарная теплопроводность, наклонная трещина, температура, тепловой поток, ин-
тегральное представление, функция Макдональда — Бесселя, граничные условия, раз-
ность температур.

Введение

Рассматривается стационарное уравнение теплопроводности в верхней полуплоскости с 
трещиной конечной длины, наклоненной к границе полуплоскости под углом 0, .

2
πα  ∈ 

 

	 ( ) ( ) ( )
1 2

cos sin 0,
u x u x

u x k k
x x

β β
∂ ∂

∆ + + =
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 2 \ ,x l+ +∈ 	 (1)

где 2 2
1 2{ | , 0}x x x+ = ∈ ∈ >    — верхняя полуплоскость,

2
1 2{ | cos , sin , (0;| |)}l x x t x t t lα α+ = ∈ = = ∈  — интервал, моделирующий трещину,

l+  — отрезок, соответствующий интервалу ,l+
β  — угол наклона вектора неоднородности материала к положительному направлению 

оси абсцисс,
∆  — оператор Лапласа,

( )u x  — температура в точке материала с координатами 1 2( , ),x x x=
const,k =  входящая в коэффициент внутренней теплопроводности 1 2( cos sin )

1 2( , ) .k x xk x x e β β+=
Уравнение (1) дополнено условием на границе полуплоскости
	 

1 1( ,0) ( ),u x xψ=  1 \{0}x ∈ 	 (2)
и условиями на разности температур и тепловых потоков при переходе через берега трещины

	 
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где ( sin ,cos )n aα= −  — вектор нормали к трещине,
1( ),xψ  0 ( ),q x  1( )q x  — известные функции.

Основной результат исследования представлен в теореме.
Теорема. Пусть функции ( )0 1( ), ( )q x q x C l+∈  ,  т. е. заданы и являются непрерывными на тре-

щине, а функция 1( )xψ  из ( )C   и ограничена на .
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Тогда задача (1)–(4) имеет решение, записываемое равенством 
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где 0K ,  1K  — функции Макдональда — Бесселя [1], 1 2ˆ ( , ).y y y= −
Для представления (5) выполняются граничные условия (2)–(4).

1. Переход к обобщенному уравнению

Вводя замену переменных 
( )1 2cos sin

2
1 2 1 2( , ) ( , )

k x x
u x x e v x x

β β− +
=  для упрощения исходной зада-

чи, а затем, для перехода к обобщенному уравнению продолжая исходную функцию и функ-
ции 0 ( )q x  и 1( )q x  на нижнюю полуплоскость нечетным образом:

	 2

1 2 2

( ), 0,
( )

( , ), 0,
v x x

v x
v x x x

>
= − − <

 	 (6)

	 

0 2
0

0 1 2 2

( ), 0,
( )

( , ), 0,
q x x

q x
q x x x

>
= − − <

         1 2
1

1 1 2 2

( ), 0,
( )

( , ), 0,
q x x

q x
q x x x

>
= − − <

	 (7)

получаем задачу

	
2

( ) ( ) 0,
4
kv x v x∆ − =   ( ) ( )2 2\ \ ,x l l+ + − −∈ ∪  	 (8)

	 ( ) ( ) 

2 2 00 0 ( ),v x n v x n q x+ ⋅ − − ⋅ =   ,x l l+ −∈ ∪ 	 (9)

	 ( ) ( )


2 2
1

2 2

0 0
( ),

v x n v x n
q x

n n
∂ + ⋅ ∂ − ⋅

− =
∂ ∂

 

 ,x l l+ −∈ ∪ 	 (10)

где 2 2
1 2{ | , 0}x x x− = ∈ ∈ <    — нижняя полуплоскость,

2
1 2{ | cos , sin , (0;| |)}l x x t x t t lα α− = ∈ = = − ∈  — интервал, моделирующий трещину в 

нижней полуплоскости, симметричную относительно оси 1Ox  исходной трещине,
l−  — соответствующий l−  отрезок,

	 2
1

( sin ,cos ), ,
( sin , cos ), .

n x l
n

n x l
α α
α α

+

−

= − ∈
=  = − − ∈

Обобщенное уравнение в пространстве 2( ),D′   соответствующее задаче (8)–(10) имеет вид

	


2
0

1 2 1

0
1

1

( ( ) ( ))
( ) ( ) 2 ( ) ( ) ( ) ( )

4
ˆ( ( ) ( ))

( ) ( ) ,

l
l

l
l

q x xkv x v x x x q x x
n

q x x
q x x

n

δ
ψ δ δ

δ
δ

+

+

−

−

∂
′∆ − = + + +

∂
∂

+ +
∂

 

	 (11)

где ( sin ,cos ),n α α= −  1 ( sin , cos ),n α α= − −  2( )xδ  — функция Дирака (см. [2]).
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Отметим, что 2( ) ( ) ( ),lq x x Dδ ′∈   и для любой 2( ) ( )x Dϕ ∈   выполнено

( ( ) ( ), ( )) ( ) ( ) ,l
l

q x x x q x x dlδ ϕ ϕ= ∫  также 2( ) ( ) ( )lq x x D
m
δ∂ ′∈

∂
  и для любой 2( ) ( )x Dϕ ∈   

( ) ( ) ( ), ( ) ( ) ,l

l

q x x xx q x dl
m m
δ ϕϕ

+

∂ ∂  = − ∂ ∂  ∫  где ( )q x  может равняться одной из функций 0 ( ),q x  1( ),q x  

0ˆ ( ),q x  1ˆ ( ),q x  l  — произвольный отрезок в 2.

Для получения (11) к произвольной основной функции 2( ) ( )x Dϕ ∈   был применен функ-

ционал 
2

ˆ ˆ( ) ( )
4
kv x v x∆ −  и использованы правила вычисления обобщенных производных.

2. Построение решения

Формула, задающая решение исходной задачи представлена в теореме. 
Для её получения использовалась теорема о представлении решения обобщенного уравне-

ния как свертки фундаментального решения оператора 
2

,
4
k

∆ −  заданного равенством 
2 2

0 1 2
1

2 2
kK x x

π
 − + 
   [3] со слагаемыми правой части уравнения (11), определение и свойства 

свёртки [4]. Далее показано, что решение обобщенного уравнения является решением исход-
ной задачи в верхней полуплоскости. 

Для доказательства выполнения граничных условий используется явное представление ре-
шения, свойства функций Макдональда и формула перехода от интеграла по кривой к опреде-
ленному интегралу.

Заключение

В работе представлено интегральное решение краевой задачи для уравнения теплопрово-
дности в полуплоскости с разрезом, наклонным к границе полуплоскости.
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АНАЛИТИЧЕСКИЕ ПО МАЛОМУ ПАРАМЕТРУ РЕШЕНИЯ 
ОДНОГО КЛАССА СЛАБО НЕЛИНЕЙНЫХ СПЕКТРАЛЬНЫХ ЗАДАЧ

Национальный исследовательский университет «МЭИ»

Д. А. Маслов

Аннотация. Рассматривается один класс слабо нелинейных спектральных задач с малым 
параметром при нелинейности, который включает в себя задачи на собственные значе-
ния, возникающие при расчётах критического усилия продольного сжатия стержня с 
учётом нелинейностей. Данный класс задач рассмотрен в виде уравнения в банаховом 
пространстве, где нелинейность задаётся полилинейным оператором. Собственные зна-
чения и собственные функции определяются в виде рядов по степеням малого параметра. 
Получены достаточные условия аналитичности по малому параметру собственных значе-
ний и собственных функций. Приведён пример построения приближённого решения для 
собственного значения.
Ключевые слова: нелинейная спектральная задача, малый параметр, аналитическое ре-
шение, банахово пространство.

Постановка задачи 

Задачи на собственные значения возникают при расчётах минимального усилия продоль-
ного сжатия стержня, приводящего к потере его устойчивости. Учёт в данных задачах нели-
нейностей, вызванных разными геометрическими и физическими факторами [1–4], приводит 
к классу нелинейных краевых задач, которые могут быть записаны в виде уравнения со значе-
ниями в банаховом пространстве [5]. Пусть пространство E  является оснащённым банахо-
вым пространством [6], в котором || ||v  — норма элемента ,v E∈  и также введена порождае-
мая скалярным произведением ,v v〈 〉  норма || || , ,cv v v= 〈 〉  подчинённая норме пространства 

,E  то есть, существует постоянная 0,γ >  такая что || || || ||cv vγ≤  для любого .v E∈
Рассмотрим в E  слабо нелинейную задачу на определение собственных значений :λ
	 1 2 3( , , ),Au Gu u B H u H u H uλ α ε+ + = 	 (1)

где ,A  jH  — линейные неограниченные операторы, 1,2,3;j =  :B E E E E× × →  — полилиней-
ный ограниченный оператор; параметр 0,α ≠  ε  — малый параметр. 

1. Условия аналитичности решения по малому параметру 

Решение задачи (1) будем искать в виде рядов по степеням малого параметра :ε
	 0, 1, ,

n
m m m n mλ λ λ ε λ ε= + +…+ +… 	 (2)

	 0, 1, ,
n

m m m n mu u u uε ε= + +…+ +… 	 (3)
В соответствии с методом неопределенных коэффициентов имеем: 

0, 0, 0, 0,

1, 0, 1, 1, 1, 0, 1 0, 2 0, 3 0,

0,
( , , ),

m m m m

m m m m m m m m m

Au Gu u
Au Gu u Gu B H u H u H u

λ α

λ α λ

+ + =

+ + = − +

2, 0, 2, 2, 1, 1, 2, 0,

1 1, 2 0, 3 0, 1 0, 2 1, 3 0, 1 0, 2 0, 3 1,( , , ) ( , , ) ( , , ),
m m m m m m m m

m m m m m m m m m

Au Gu u Gu Gu
B H u H u H u B H u H u H u B H u H u H u

λ α λ λ+ + = − − +

+ + +


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1

, 0, , , , , 1 1 2 3
1 0 0

( , , ) ,
n n k

n m m n m n m k m n k m n k j k j
k k j

Au Gu u Gu B H u H u H uλ α λ
−

− − − −
= = =

 
+ + = − +  

 
∑ ∑ ∑



	 (4)

Пусть выполнены следующие условия: 
1.  ,A  ,G  jH  — замкнутые неограниченные операторы с областями определения ,AD  ,GD  ,jD  

такими, что ,A GD D⊂  ,jAD D⊂  1,2,3.j =
2. Линейная однородная задача  
	 0 0Au Gu uλ α+ + =

имеет собственные значения 0,1 0,2{ , }λ λ …  и соответствующую им систему нормированных 
«собственных векторов» 1 2{ , , },b b= …  0, ,m mb u=  1,2,m = … . Сопряженная к   система 

* * *
1 2{ , , }b b= …  является G-ортогональной. 

3. Обратные операторы 1
0, ,( )mA Gλ −+  1,2, ,m = …  являются ограниченными. 

4. Оператор 0,mA G Iλ α+ +  непрерывно обратим на пространстве ,\ mE E  где I  — тожде-
ственный оператор, 1,2, ,m = …  1{ }m mE ∞

=  — набор одномерных подпространств, натянутых на 
«собственные векторы» 1 2{ , , }.b b …

Действуя так же, как и в линейной теории регулярных возмущений [7], последовательно 
найдем коэффициенты рядов (2), (3): 

	 (

)

*
1 2 3

1, *

1
1, 0, \ 1, 1 2 3

* *
2,1 1 1, 2 3 1 2 1, 3*

*
1 2 3 1,

2,

( , , ), ,

( ) [ ( , , )],

1 ( , , ), ( , ),

( , , ), ,

( )

,

,
,

|
m

m m m m
m

m m

m m E E m m m m m

m m m m m m m m
m m

m m m m

m m

B H b H b H b b
Gb b

u A G I Gb B H b H b H b

B H u H b H b b B H b H u H b b
Gb b

B H b H b H u b

u A G I

λ

λ α λ

λ

λ α

−

〈 〉
=

〈 〉

= + + − +

= 〈 〉 + 〈 〉 +
〈 〉

+〈 〉

= + + 1
\ 1, 1, 2,

1 1, 2 3 1 2 1, 3 1 2 3 1,

[

( , , ) ( , ) ( , , ) ,,

|
mE E m m m m

m m m m m m m m m

Gu Gb

B H u H b H b B H b H u H b B H b H b H u

λ λ− − − +

+ + + 

	 (5)

	

1
*

, 1 1 2 3*
0 0

1
1 *

, \ 1 1 2 3 , ,
0 0 1

1 ( , , ), ,

( ) ( , , ),

,

,|
m

n k

n m n k j k j m
k jm m

n k n

n m m E E n k j k j m k m n k m
k j k

B H u H u H u b
Gb b

u A G I B H u H u H u b Gu

λ

λ α λ

−

− − −
= =

−
−

− − − −
= = =






=  〈 〉  

 
= + + − 




 
  

∑ ∑

∑ ∑ ∑


Доказано, что условия 1–4 являются достаточными условиями, при которых ряды (2), (3) 
сходятся не только асимптотически, но и в обычном смысле, представляя тем самым решение 
задачи (1), аналитическое в некоторой окрестности точки 0.ε =  Для доказательства использо-
вались методы аналитической теории возмущений, предложенные для нелинейных регулярно 
возмущённых задач в [8]. 

2. Пример расчёта приближения для собственного значения 

Пусть шарнирно опёртый стержень расположен на упругом основании и вдоль его оси при-
кладывается усилие сжатия. Ставится задача определения минимального усилия сжатия, при 
котором происходит потеря устойчивости стержня, то есть минимального положительного 
собственного значения, соответствующего одной из собственных форм стержня [2]:
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3, (0,1),

(0) (0) (1) (1) 0,

IVu u u u x
u u u u

λ α ε′′+ + = ∈
′′ ′′= = = =

	 (6)

где ( )u x  — нормализованный прогиб стержня, λ  характеризует усилие сжатия вдоль оси 
стержня, 0α >  характеризует линейную жёсткость основания, 0ε >  — малый параметр, ха-
рактеризующий нелинейную жёсткость основания. 

Задача (6) рассматривается в банаховом пространстве непрерывных функций ([0,1]),C  ос-

нащённом скалярным произведением 
1

0

,v v uvdx〈 〉 = ∫  [6], и сводится к (1), 

	

4

1 2 3

2

{ ( ) ([0,1]), (0) (0) (1) (1) 0}

,
,

,
{ ( ) ([0,1]), (0) (1)

,
0},

IV
A

G

A u D v x C v v v v
u

H

u
D v x C v vG

IH H
u

′′ ′′= ∈ = = = =

′′ = ∈

=

=
=
= =

= =

где I  — тождественный оператор. Проверим условия 1–4.
1. Очевидно, что ,A  G  — замкнутые неограниченные операторы, jH  — ограниченные 

операторы, причём области определения ,A GD D⊂  ,jAD D⊂  1,2,3.j =
2. При 0ε =  линейная задача (6) имеет собственные значения 2

0, 2( ) ,
( )m m

m
αλ π
π

= +  и нор-

мированные собственные функции 2 sin ,mb mxπ=  1,2, ,m = …  причём с ними совпадают 
A-сопряжённые функции * ,m mb b=  которые также являются G -ортогональными:

	 * *
2

0, ,
( , )

( ) 0, .n k

n k
Gb b

n n kπ
≠

= − ≠ =
3. Обратные операторы 1

0, ,( )mA Gλ −+  1,2, ,m = …  являются ограниченными, поскольку за-
дача 0,( ) , 1, 2, ,mA G y f mλ+ = = …  имеет единственное решение, если 2

0, ,( )m mλ π≠  что верно, 
поскольку 2( )m mλ π≠  при 0.α ≠

4. Условие непрерывной обратимости оператора 0,mA G Iλ α+ +  на пространстве \ mE E  со-
ответствует условию 

	 2 2
0, 2 2( ) ( ) ,, 1, 2, ,

( ) ( )m m k k k
m k

mα αλ π π
π π

= + = … ≠≠ +

из которого получаем условие для параметра :α
	 4 2 2 , 1, 2, , .m k k k mα π … ≠≠ =
Таким образом, все поставленные условия выполнены, следовательно собственные значе-

ния и собственные функции задачи (6) аналитичны в некоторой окрестности точки 0,ε =  и 
можно их построить в виде рядов (2), (3) с коэффициентами (5). Тогда для минимального соб-
ственного значения получим следующие коэффициенты рядов (2), (3): 

	 2
0,1 2 ,αλ π

π
= +     10,1 2 sin ,u b xπ= =

	 *
1 1 1 1

1 1

1*
4

1,1 2 2
0

( , , ), 4 3(sin ) ,
, 2

B b b b b x dx
Gb b

λ π
π π

〈 〉
= = − = −

〈 〉 ∫
	 ( )

1 10,1 1 1
1

1,1 \ , 11 1( ) ( , , ) ,|E Eu A G I Gb B b b bλ α λ−+ + += −  

где ( )21 1 1
2 3

1,1 1
3 3 2 2( , , ) 2 sin 2 2(sin ) sin 3sin sin 3

2 2 2
Gb B b b b x x x x xλ π π π π π π

π
− = − + = − + −+ =

2 sin 3
2

xπ= −  и решение на 1\ ,E E  то есть \{ sin }E C xπ , задачи
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2

1,1 1,1 1,12

1,1 1,1 1,1 1,1

2 sin 3 , (0,1),
2

(0) (0) (1) (1) 0,

IVu u u x x

u u u u

απ α π
π

  ′′+ + + = − ∈ 
 

′′ ′′= = = =
имеет вид: 

	 4
1,1 4

2( ) sin 3 , (0,1), 9 .
16(9 )

u x x xπ α π
π α

= − ∈ ≠
−

И, таким образом, зная 1,1,u  получим 

	

1 1 1 1 1 1 1 1 1
12 1

1 1

4
2 4 4

* * * 1
1,1 1,1 1,1 2 *

2,1 ,1 1*
0

1
3

0
2

( , , ), ( , ), ( , , ), 3 ( ) ( ) ( )

3 3sin 3 (sin ) , 9 .

,

4 (9 ) 32 (

,

9 )

B u b b b B b u b b B b b u b
u x b x b x dx

Gb b

x x dx

λ
π

π π α π
π π α π π α

〉

−

+

−

〈 〈 〉 + 〈 〉
= = − =

〈 〉

= = − ≠

∫

∫
В итоге, получено приближение третьего порядка точности по малому параметру :ε

	 2 2 2
1 0,1 1, 2

4
41 22,1

3 3 , 9 .
2 32 (9 )

αλ λ ελ ε λ π ε ε α π
π π π α

≈ + + =
−

+ − − ≠

Заключение

Рассмотрен один класс нелинейных спектральных задач с малым параметром при нели-
нейности, который включает в себя задачи на собственные значения, возникающие при рас-
чётах критического усилия продольного сжатия стержня с учётом нелинейностей. Данный 
класс задач рассмотрен в виде уравнения в банаховом пространстве, где нелинейность задана 
полилинейным оператором. Собственные значения и собственные функции определяются в 
виде рядов по степеням малого параметра. Получены достаточные условия аналитичности по 
малому параметру собственных значений и собственных функций. Приведён пример постро-
ения приближённого решения для собственного значения. 
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Яшар Т. Мегралиев1, Афаг Гусейнова1, Анар Мамедов2

Аннотация. Работа посвящена исследованию разрешимости обратной краевой задачи 
с неизвестными коэффициентами и правой частью, зависящей от времени, для диффе-
ренциального уравнения с частными производными четвертого порядка с нелокальными 
условиями в прямоугольнике. Дается определение классического решения поставленной 
задачи. Сначала исходная задача сводится к эквивалентной задаче (в определенном смыс-
ле), для которой доказывается теорема о существовании и единственности. Далее на ос-
нове этих фактов доказывается существование и единственность классического решения 
исходной задачи. Ключевые слова: нелинейная обратная краевая задача, дифференциаль-
ного уравнения с частными производными четвертого порядка, существование и един-
ственность, классического решения.
Ключевые слова: обратная краевая задача для псевдогиперболического уравнения, метод 
Фурье, классическое решение.

Введение

Современные проблемы естествознания приводят к необходимости обобщения классиче-
ских задач математической физики, а также к постановке качественно новых задач, к кото-
рым можно отнести нелокальные задачи для дифференциальных уравнений. Среди нелокаль-
ных задач большой интерес представляют задачи с интегральными условиями. Нелокальные 
интегральные условия описывают поведение решения во внутренних точках области в виде 
некоторого среднего. Такого рода интегральные условия встречаются при исследовании фи-
зических явлений в случае, когда граница области протекания процесса недоступна для непо-
средственных измерений. Примером могут служить задачи, возникающие при исследовании 
диффузии частиц в турбулентной плазме [1], процессов распространения тепла [2, 3], про-
цесса влагопереноса в капиллярно-простых средах [4], а также при исследовании некоторых 
обратных задач математической физики.

Обратными задачами для дифференциальных уравнений принято называть задачи, в ко-
торых наряду с нахождением решения требуется найти входные данные, например, коэффи-
циенты уравнения или функции, определяющие начальные или граничные условия. Теория 
обратных задач для дифференциальных уравнений является динамично развивающимся раз-
делом современной науки. 

В данной работе, следуя [5, 6], мы доказываем существование и единственность решения 
нелинейной обратной краевой задачи для дифференциального  уравнения с частными произ-
водными четвертого порядка с нелокальными условиями в прямоугольнике.

1. Постановка задачи и ее сведение к эквивалентной задаче

Рассмотрим обратную краевую задачу для уравнения 
	 ( , ) ( , ) ( , ) ( ) ( , ) ( ) ( , ) ( , )tt ttxx xxxxu x t u x t u x t a t u x t b t g x t f x tα− + = + + 	 (1)
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в области {( , ) : 0 1, 0 }TD x t x t T= ≤ ≤ ≤ ≤  с нелокальными начальными условиями интеграль-
ного вида

	
0

( ,0) ( ) ( , ) ( ), (0 1) ,
T

u x M t u x t dt x xϕ− = ≤ ≤∫
	 ( ,0) ( ) , (0 1) ,tu x x xψ= ≤ ≤ 	 (2)

граничным условием
	 (0, ) (1, ) (0, ) (1, ) 0, (0 )x xxx xxu t u t u t u t t T= = = = ≤ ≤ 	 (3)

и с дополнительными условиями

	
1

1
0

( , ) ( ), (0 ),u x t dx h t t T= ≤ ≤∫ 	 (4)

	 2(0, ) ( ), (0 ) ,u t h t t T= ≤ ≤ 	 (5)

где ( , ), ( ), ( ), ( ), ( ) ( 1, 2)if x t x x M t h t iϕ ψ =  заданные функции, а ( , ),u x t  ( )a t  и ( )b t  искомые 
функции.

Обозначим через
	 ( ) {(4,2) ( , ) : ( , ), ( , ), ( , ), ( , ),T x xx xxxC D u x t u x t u x t u x t u x t=

	 }( , ), ( , ), ( , ), ( , ), ( , ) ( ) .xxxx t tt ttx ttxx Tu x t u x t u x t u x t u x t C D∈

Определение 1. Под классическим решением обратной краевой задачи (1)–(5) будем пони-
мать тройку { ( , ), ( ), ( )}u x t a t b t  функций ( , ),u x t  ( )a t  и ( ),b t  если 4,2( , ) ( ),Tu x t C D∈   ( ) [0, ],a t C T∈  
( ) [0, ]b t C T∈  и выполняются соотношения (1)–(5) в обычном смысле.

Теперь рассмотрим следующую вспомогательную обратную краевую задачу. Требуется 
определить тройку { ( , ), ( ), ( )}u x t a t b t  функций 4,2( , ) ( ),Tu x t C D∈   ( ) [0, ],a t C T∈  ( ) [0, ]b t C T∈  из 
(1)–(3) и

	
1 1

1
0 0

( ) ( ) ( ) ( , ) ( , )a t h t b t g x t dx f x t dx+ + =∫ ∫ 1( ) (1, ) (1, ) (0 ),ttx xxxh t u t u t t Tα′′= − + ≤ ≤ 	 (6)

	 2( ) ( ) ( ) (0, ) (0, )a t h t b t g t f t+ + = 2 ( ) (0, ) (0, ) (0 ).ttxx xxxxh t u t u t t Tα′′= − + ≤ ≤ 	 (7)
Аналогично [1], доказывается следующая
Теорема 1. Пусть ( ), ( ) [0,1],x x Cϕ ψ ∈  ( ) [0, ],M t C T∈  2( ) [0, ]ih t C T∈  ( 1, 2),i =  ( , ) ( ),Tg x t C D∈  

( , ) ( )Tf x t C D∈  
1

1 2
0

( ) ( ) (0, ) ( ) ( , ) 0h t h t g t h t g x t dx≡ − ≠∫  (0 )t T≤ ≤  и выполняются условия согла-

сования 
1 1

1 1 1
0 0 0

( ) (0) ( ) ( ) , ( ) (0) ,
T

x dx h M t h t dt x dx hϕ ψ ′= − =∫ ∫ ∫  2 2 2
0

(0) (0) ( ) ( ) , (0) (0).
T

h M t h t dt hϕ ψ ′= − =∫
Тогда справедливы следующие утверждения:
1. Каждое классическое решение { ( , ), ( ) , ( )}u x t a t b t  задачи (1)–(5) является и решением зада-

чи (1)–(3), (6), (7);
2. Каждое решение { ( , ), ( ) , ( )}u x t a t b t  задачи (1)–(3), (6), (7), такое, что

	
[0, ] [0, ]

( ) ( ) 1
2C T C T

TM t a t T + < 
 

является классическим решением задачи (1)–(5).
2. Исследование существования и единственности классического решения обратной 

краевой задачи. 
Компоненту ( , )u x t  решения { ( , ), ( ) , ( )}u x t a t b t  задачи (1)–(3), (6), (7) будем искать в виде:
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1

( , ) ( ) cos (2 1) ,
2k k k

k
u x t u t x kπλ λ

∞

=

 = = − 
 

∑ 	 (8)

где

	
1

0

( ) 2 ( , ) cos ( 1,2,...)k ku t u x t xdx kλ= =∫
— дважды непрерывно дифференцируемые функции на отрезке [0, ].T

Тогда, применяя формальную схему меда Фурье, из (1) и (2) имеем:
	 2 '' 4(1 ) ( ) ( ) ( ; , , ) ( 1, 2...;0 ),k k k k ku t u t F t u a b k t Tαλ λ+ + = = ≤ ≤ 	 (9)

	
0

(0) ( ) ( ) ,
T

k k ku M t u t dtϕ= + ∫
	 (0) ( 1,2...) ,k ku kψ′ = = 	 (10)

где
( ; , , ) ( ) ( ) ( ) ( ) ( ),k k k kF t u a b f t a t u t b t g t= + +

1 1

0 0

( ) 2 ( , ) cos , ( ) 2 ( , ) cos ,k k k kf t f x t xdx g t g x t xdxλ λ= =∫ ∫  

1 1

0 0

2 ( ) cos , 2 ( ) cos ( 1,2,...).k k k kx xdx x xdx kϕ ϕ λ ψ ψ λ= = =∫ ∫
Решая задачу (9), (10) находим

	
0

1( ) ( ) ( ) cos sin
T

k k k k k k
k

u t M t u t dt t tϕ λ ψ λ
β

 
= + + + 
 

∫

	 2
0

1 ( ; , , ) sin ( ) ( 1,2...),
(1 )

t

k k
k k

F u a b t d kτ λ τ τ
β αλ

+ − =
+ ∫ 	 (11)

где

	
2

2
.

1
k

k

k

λβ
αλ

=
+

Для определения первой компоненты ( , )u x t  решения задачи (1)–(3), (6), (7), учитывая со-
отношения (3.26), из (3.23) получаем:

	
1 0

1( , ) ( ) ( ) cos sin
T

k k k k k
k k

u x t M t u t dt t tϕ λ ψ λ
β

∞

=

 = + + + 
 

∑ ∫

	 2
0

1 ( ; , )sin ( ) cos .
(1 )

T

k k
k k

F u a t d xτ λ τ τ λ
β αλ


+ − + 

∫ 	 (12)

Теперь, из (6), (7) имеем: 

[ ] ( )
1 1

1
1 2

0 0

( ) ( ) ( ) ( , ) ) (0, ) ( ) (0, ) ( , )a t h t h t f x t dx g t h t f t g x t dx−   ′′ ′′= − − − + 
 

∫ ∫
4

2
1 0

1( ) ( ) cos sin
1

T
k

k k k k k
k k k

M t u t dt t tλ ϕ β ψ β
αλ β

∞

=

  
+ + + +  +   
∑ ∫

2
0

1 ( ; , , ) sin ( )
(1 )

t

k k
k k

F u a b t dτ β τ τ
β αλ


+ − ++ 

∫
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12

2
0

( 1)( ; , , ) (0, ) ( , ) ,
1

k
k

k
k k

F t u a b g t g x t dxαλ
αλ λ

  − + −  +   
∫ 	 (13)

[ ] ( )
1

1
2 1 1 2

0

( ) ( ) ) ( ) (0, ) ( ) ( ) ( , ) ) ( )b t h t h t f t h t h t f x t dx h t−    ′′ ′′= − − − +  
  

∫
4

2
1 0

12 ( ) ( ) cos sin
1

T
k

k k k k k
k k k

M t u t dt t tλ ϕ β ψ β
αλ β

∞

=

  
+ + + +  +   

∑ ∫

2
0

1 ( ; , , ) sin ( )
(1 )

t

k k
k k

F u a b t dτ β τ τ
β αλ


+ − ++ 

∫

	
2 1

1 22

( 1)( ; , , ) ( ) ( ) ,
1

k
k

k
k k

F t u a b h t h tαλ
αλ λ

+   − + −  +   
	 (14)

Таким образом, решение задачи (1)–(3), (6), (7) свелось к решению системы (12), (13), (14) 
относительно неизвестных функций ( , ),u x t  ( )a t  и ( ).b t

Для изучения вопроса единственности решения задачи (1)–(3), (6), (7) важную роль играет 
следующая.

Лемма 1. Если { ( , ), ( ), ( )}u x t a t b t  любое классическое решение задачи (1)–(3), (6), (7), то функ-

ции 
1

0

( ) 2 ( , ) cosk ku t u x t xdxλ= ∫  удовлетворяют системе (11).

Из леммы 1 следует, что имеет место следующее
Замечание. Из леммы 1 следует, что для доказательства единственности решения задачи 

(1)–(3), (6), (7), достаточно доказать единственность решения системы (12), (13), (14).
Предположим, что данные задачи (1)–(3), (6), (7) удовлетворяют следующий условиям:
1.  ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )4 (5) (4)

20,1 , 0,1 , 0 1 0 1 0 0x C x Lϕ ϕ ϕ ϕ ϕ ϕ ϕ′ ′′′ ′′∈ ∈ = = = = =

2.  ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( )3 (4)
20,1 , 0,1 , 0 1 0 1 0x C x Lψ ψ ψ ψ ψ ψ′ ′′′ ′′∈ ∈ = = = =

3.  ( ) ( ) ( ) ( ) ( )2, , , , , ,x T xx Tf x t f x t C D f x t L D∈ ∈ ( ) ( ) ( )0, 1, 0 0xf t f t t T= = ≤ ≤ .
4.  ( ) ( ) ( ) ( ) ( )2, , , , , ,x T xx Tg x t g x t C D g x t L D∈ ∈ ( ) ( ) ( )0, 1, 0 0 .xg t g t t T= = ≤ ≤
5.  ( ) [ ] ( ) [ ]20, , 0, ( 1, 2),iM t C T h t C T i∈ ∈ =

1

1 2
0

( ) ( ) (0, ) ( ) ( , ) 0 (0 )h t h t g t h t g x t dx t T≡ − ≠ ≤ ≤∫
Доказана следующая.
Теорема 2. Пусть выполнены условия 1–5. Тогда задача (1)–(3), (6),(7) при малых значениях 
[ ] 1

[0, ]
( )

C T
T h t −+  имеет единственное решение. 

С помощью теоремы 1 доказывается следующая
Теорема 3. Пусть выполняется все условия теоремы 2 и 

1 1

1 1 1
0 0 0

( ) (0) ( ) ( ) , ( ) (0) ,
T

x dx h M t h t dt x dx hϕ ψ ′= − =∫ ∫ ∫  2 2 2
0

(0) (0) ( ) ( ) , (0) (0) .
T

h M t h t dt hϕ ψ ′= − =∫

[0, ]
( ) ( ( ) 2) 1.

2C T

TM t A T T + + < 
 

Тогда задача (1)–(6) при малых значениях [ ] 1

[0, ]
( )

C T
T h t −+  имеет единственное классиче-

ское решение.
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УДК 517

О СПЕКТРАЛЬНЫХ СВОЙСТВАХ КРАЕВОЙ ЗАДАЧИ 
С РАЗРЫВНЫМИ РЕШЕНИЯМИ И УСЛОВИЯМИ ТРЕТЬЕГО ТИПА

Воронежский государственный университет

Е. Е. Некрылов

Аннотация. Работа посвящена спектральным свойствам краевой задачи для оператора 
второго порядка с разрывными коэффициентами и решениями. Для анализа применя-
ется метрическое расширение и специальные функциональные пространства. Основные 
результаты включают условия осцилляционности спектра и доказательство свойства пе-
ремежаемости нулей собственных функций. Исследование опирается на интегральные и 
поточечные методы, предложенные Ю. В. Покорным и М. Б. Зверевой.
Ключевые слова: спектральная задача, разрывные решения, дифференциальный опера-
тор второго порядка, осцилляционность спектра, собственные значения, собственные 
функции, метрическое расширение, определитель Вронского, интегральные методы, 
функции с разрывами, краевая задача.

Введение

В отличие от предыдущих исследований, рассматривавших случай закрепленных концов, 
здесь анализируется общая ситуация с упругими краевыми условиями при 0.iγ >  Для кор-
ректной постановки задачи в точках разрыва коэффициентов применяется конструкция рас-
ширенного пространства 

(2)
.[0,  ]σ

Целью статьи является установление новых свойств собственных функций, а именно дока-
зательство связи между определителем Вронского ( )λ∆  и нормировочными множителями .kα  
Методологическую основу исследования составляет поточечный подход, развитый Ю. В. По-
корным.

1. Основной результат

В работе получены некоторые свойства спектральной задачи с разрывными решениями

	 1

2

( ) ,
(0) (0) 0,

( ) 0) ,(

Lu pu qu mu
pu u
pu u

µ σ

µ

µ

λ
γ
γ

 ′′≡ − + =
 ′ − =
 ′ + =

 

(1)

где 0.iγ >  При этом мы можем считать, что 1γ = ∞  и/или 2γ = ∞  соответствует краевому усло-
вию (0) 0u =  и/или ( ) 0.u =  

В работе [1] для случая 1 2γ γ= = ∞  эта задача изучалась в интегро-дифференциальной 
форме, когда уравнение проинтегрировано по мере σ  в пределах от 0  до .x  Было доказано, 
что в этом случае спектр задачи (1) является осцилляционным, т. е. состоит только из соб-
ственных значений, единственная точка сгущения — это ;+∞  нулевые места собственных 
функций перемежаются.

Решение задачи (1) мы ищем в классе µ-абсолютно непрерывных на [0, ]  функций, первая 
производная которых σ -абсолютно непрерывна на [0, ].

Мы считаем, что уравнение задано на специальном расширении 
(2)

[0,  ]σ  отрезка [0, ],  ко-
торое строится следующим образом. Обозначим через ( )S σ  множество точек разрыва строго 
возрастающей на [0, ]  функции ( ).xσ  На [0, ]  зададим метрику ( , ) ( ) ( ) .x y x yρ σ σ= −  Если 
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( )S σ  непусто, то, как нетрудно видеть, метрическое пространство ([0, ]; )ρ   неполно. Стан-
дартное пополнение нам дает [0,  ,]µ  в котором каждая точка ( )Sξ σ∈  заменена на тройку 
упорядоченных элементов { 0; ; 0}ξ ξ ξ− +  (рис. 1). Формальная замена элемента ξ  из этого на-
бора на упорядоченную пару собственных элементов 1 2{ ; }ξ ξτ τ  (рис. 2) и приводит к множеству 

(2)
.[0,  ]σ

Рис. 1. Специальное расширение [0,  ]µ Рис. 2. Специальное расширение 
(2)

[0,  ]σ
 

Уравнение в точках 1 2{ ; }ξ ξτ τ  мы понимаем как равенства
	 1 1( ) ( 0) ( ) ( 0),( )( )pu q u m uξ ξ

µ ξ τ ξ λ τ ξ− ′−∆ + − = −

	 2 2( ) ( 0) ( ) ( 0),( )( )pu q u m uξ ξ
µ ξ τ ξ λ τ ξ+ ′−∆ + + = +

где ( ) ( ) (  0)x x xψ ψ ψ− = − −∆  и ( ) ( 0) ( ) x x xψ ψ ψ+∆ = + −  — левый и правый скачки функции 
( )xψ  в точке x  соответственно.

Мы предполагаем выполненными следующие условия:
1)  ( )p x  — σ -абсолютно непрерывна на [0, ];
2) 

[0, ]
lim 0;p >


3)  ( )q x  и ( )m x  — σ -суммируемые на 
(2)

[0,  ]σ  функции;
4)  ( ) 0m x >  для всех 

(2)
[0, ] .x σ∈ 

Пусть ( , )xϕ λ  и ( , )xψ λ  — решения уравнения   ,Lu muλ=  удовлетворяющие начальным ус-
ловиям 1(0) ,u γ=  (0) 1puµ′ =  и 2( ) ,u γ=  1,( )puµ′ = −  соответственно. В [1] введен аналог 
определителя Вронского системы { ( , ), ( , )},x xϕ λ ψ λ  и доказано, что он не зависит от .x  Обо-
значим его через ( ).λ∆

В работе доказана теорема.
Теорема. Пусть kλ  — одно из собственных значений задачи (1), тогда существует отлич-

ное от нуля kβ ,  такое, что
	 ( , )  ( , )kx xϕ λ β ψ λ≡ ,

и справедливо равенство

	 |
nk k

d
d λ λα β
λ == ∆ ,

где 
	 2

0
 , ( ) ( )( ) .k kx M x d xσα ϕ λ σ= ′∫


Отметим, что при анализе изучаемого уравнения мы используем поточечный подход, пред-
ложенный Ю. В. Покорным [2].
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Заключение

Таким образом, в работе получено ключевое соотношение, связывающее определитель 
Вронского ( )λ∆  и квадрат нормы собственной функции для спектральной задачи с разрывны-
ми решениями. 
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ОБ ОЦЕНКЕ ПРИБЛИЖЕННОГО РЕШЕНИЯ
ФАКТОРИЗОВАННОГО УРАВНЕНИЯ ВТОРОГО ПОРЯДКА

Липецкий государственный технический университет

М. Н. Орешина

Аннотация. Предлагается метод приближенного решения линейного дифференциально-
го уравнения второго порядка с матричными коэффициентами большой размерности. 
Точное решение такого уравнения может быть выражено через экспоненту от квадра-
тичного матричного пучка и ее производную. В докладе предполагается, что пучок фак-
торизован, а его корни являются диагонализуемыми матрицами. Для вычисления при-
ближенного решения используются рациональные функции от матричных корней пучка. 
Получена абсолютная оценка точности приближенного решения однородного уравнения.
Ключевые слова: квадратичный пучок, корни пучка, функции от пучка, матричная экс-
понента, рациональная аппроксимация, оценки приближения.

Введение

Хорошо известно, что решение линейного дифференциального уравнения первого порядка
	 ( ) ( ) ( )x t Ax t f t′ = +

сводится к нахождению экспоненты от матрицы ,A

	 11 ( ) ,
2

At te e I A d
i

λ λ λ
π

−

Γ

= −∫
где I  — единичная матрица, а контур Γ  охватывает спектр матрицы A. При этом в случае, 
когда матрица A  имеет большую размерность, вычисление матричной экспоненты является 
нетривиальной задачей и требует применения приближенных методов. 

Для факторизованного линейного дифференциального уравнения второго порядка

	 ( ) ( )d dI Y I X x t f t
dt dt

  − − =  
  

формулы для точного решения содержат функции teλλ  и teλλ λ  от матриц X  и .Y  Для 
матриц большой размерности в докладе предлагается использовать рациональные аппрокси-
мации этих функций. В теореме 2 приводится априорная оценка точности полученного при-
ближенного решения для случая однородного уравнения.

Близкий подход для приближенного решения уравнения первого порядка в случае матри-
цы A  большой размерности, самосопряженной относительно некоторого специального ска-
лярного произведения, изложен в [1], а для уравнения с неограниченным нормальным опера-
торным коэффициентом A  — в [2].

1. Точное решение

Рассмотрим линейное дифференциальное уравнение второго порядка 
	 ( ) ( ) ( ) ( ),x t Bx t Cx t f t′′ ′+ + = 	 (1)

где B  и C  — постоянные квадратные матрицы большой размерности, а f  — непрерывная 
функция. Матричную функцию

	 2( ) , ,L I B Cλ λ λ λ= + + ∈ 	 (2)
называют квадратичным пучком, соответствующим уравнению (1). Точное решение уравне-
ния (1) с начальными условиями



136

	 0

1

(0) ,
(0) ,

x x
x x

=
′ =

	 (3)

можно записать [3, теорема 1] в терминах аналитических функций от квадратичного пучка (2), 
а именно

	 0 1 0
0

( ) ( ) ( )( ) ( ) ( ) ,
t

x t U t x U t x Bx U t s f s ds′= + + + −∫
где

	

2 1

2 1

1( ) ( ) ,
2

1( ) ( ) .
2

t

t

U t e I B C d
i

U t e I B C d
i

λ

λ

λ λ λ
π

λ λ λ λ
π

−

Γ

−

Γ

= + +

′ = + +

∫

∫
Здесь контур Γ  охватывает спектр пучка.

Говорят, что квадратичный матричный пучок факторизован, если его можно разложить на 
линейные множители, то есть представить в виде

	 2( ) ( )( ).L I B C I Y I Xλ λ λ λ λ= + + = − −
Очевидно, в этом случае исходное дифференциальное уравнение (1) можно также записать в 
факторизованном виде

	 ( ) ( ).d dI Y I X x t f t
dt dt

  − − =  
  

	 (4)

Ниже будем всегда предполагать, что спектры матриц X  и Y  не пересекаются. Следующая 
теорема может быть получена из [3, теорема 1] и [4, теорема 3] и позволяет выписать явную 
формулу для точного решения уравнения (4). В этой формуле используется вспомогательная 
матрица ,W  которая может быть найдена как решение уравнения Сильвестра [5].

Теорема 1. Пусть спектры матриц X  и Y  не пересекаются. Тогда решение факторизован-
ного уравнения (4) с начальными условиями (3) можно представить в виде

	 ( ) ( )( ) ( )( ) ( )
0 1 0

0

( ) ( ) ( ) ,
t

Xt Yt Xt Yt X t s Y t sx t Xe W WYe x e W We x X Y x e W We f s ds− −= − + − − + + −∫ 	 (5)

где матрица W  является решением уравнения Сильвестра 
	 .XW WY I− =

2. Приближенное решение

Напомним, что нас интересует случай, когда матричные коэффициенты исходного уравне-
ния имеют большую размерность, поэтому вычисление точного решения по формуле (5) затруд-
нительно. В таких ситуациях предлагается использовать следующий приближенный метод. 

Подберем две скалярные рациональные функции, приближающие экспоненту teλ  и ее про-
изводную по t  на спектре матрицы ,X  то есть

	 1 2( ) , ( ) , ( ),t t
t tr e r e Xλ λλ λ λ λ σ≈ ≈ ∈

с корнями знаменателя вне ( ).Xσ  Аналогично выберем две скалярные рациональные функ-
ции для матрицы :Y

	 3 4( ) , ( ) , ( ).t t
t tr e r e Yλ λλ λ λ λ σ≈ ≈ ∈

Затем подставим в найденные рациональные функции матрицы ,X  Y  и заменим в форму-
ле (5) матричные функции ,Xte  ,XtXe  ,Yte  YtYe  соответствующими рациональными приближе-
ниями, в результате получим формулу для приближенного решения:
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( ) ( )( ) ( )2 4 1 3 1 3
0 1 0

0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .
t

t t t t t s t sx t r X W Wr Y x r X W Wr Y x X Y x r X W Wr Y f s ds− −= − + − − + + −∫

Будем предполагать, что матрицы X  и Y  являются диагонализуемыми, то есть представи-
мы в виде

	 1 1, ,X YX TD T Y HD H− −= =

где XD  и YD  — диагональные матрицы из собственных значений матриц X  и ,Y  а T  и H  — ма-
трицы из собственных векторов матриц X  и .Y

Следующая теорема позволяет оценить абсолютную точность приближенного решения од-
нородного факторизованного уравнения.

Теорема 2. Пусть ( ) 0f t ≡ ,  а скалярные рациональные функции удовлетворяют оценкам

	
1 2

1 2
3 4

3 4

| ( ) | ( ) | ( ) | ( ) ( )
| ( ) | ( ) | ( ) | ( ) ( ).

t t
t t

t t
t t

r e t r e t X
r e t r e t Y

λ λ

λ λ

λ ε λ λ ε λ σ

λ ε λ λ ε λ σ

− ≤ − ≤ ∈

− ≤ − ≤ ∈

, , ,

, ,
Тогда для приближенного решения x  справедлива абсолютная оценка

( ) ( )2 4 0 1 3 1 02 2 2 2 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x t x t t T t H W x t T t H W x X Y xε κ ε κ ε κ ε κ− ≤ + ⋅ + + ⋅ − + ,

где 1
2 2

( )T T Tκ −= ⋅  и 1
2 2

( )H H Hκ −= ⋅  — числа обусловленности матриц T  и .H
Замечание. Отметим, что если матрицы X  и Y  являются нормальными, то соответствую-

щие им матрицы T  и H  являются унитарными, и, следовательно,

	
1 *

2 22 2

1 *
2 22 2

( ) 1 1 1,

( ) 1 1 1.

T T T T T

H H H H H

κ

κ

−

−

= ⋅ = ⋅ = ⋅ =

= ⋅ = ⋅ = ⋅ =

Таким образом, в случае, когда корни квадратичного пучка являются нормальными матри-
цами, формула для оценки приближенного решения упрощается.
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ОСОБЕННОСТИ ПОСТРОЕНИЯ ТАБЛИЦ БУТЧЕРА ДЛЯ МЕТОДОВ РУНГЕ — КУТТЫ

Воронежский государственный университет

М. А. Писарцов

Аннотация. В работе рассмотрены вопросы построения таблиц Бутчера для метода Рун-
ге — Кутты 4-го порядка точности решения задачи Коши для дифференциального уравне-
ния первого порядка. Выявлена зависимость точности вычисления и структуры таблицы 
Бутчера от свободных коэффициентов системы уравнений. В качестве иллюстрации зави-
симостей рассмотрен пример построения таблицы погрешностей одного уравнения Коши.
Ключевые слова: метод Рунге — Кутты, таблица Бутчера, метод Рунге — Кутты — Чебы-
шева, численное решение обыкновенных дифференциальных уравнений.

Введение

Методы Рунге — Кутты (РК) [1, 2, 4, 5, 6] являются одними из наиболее распространённых 
численных методов решения задачи Коши для обыкновенных дифференциальных уравнений 
(ОДУ). Наибольшую известность получил явный метод Рунге 4-го порядка точности, отлича-
ющийся простотой реализации и понимания.

Однако в настоящей работе применяется неявный метод Рунге — Кутты — Чебышева (РКЧ) 
[4–6] 4-го порядка точности, построенный на основе квадратурной формулы Чебышева.  Он 
позволяет достичь высокой точности при решении жёстких и нежёстких систем ОДУ. Особое 
внимание уделено построению таблицы Бутчера (ТБ) — ключевого элемента, определяющего 
структуру и свойства метода Рунге–Кутты.

Проведённые эксперименты показали, что при фиксированном порядке аппроксимации 
система уравнений порядка может оказаться недоопределённой, что приводит к появлению 
свободных коэффициентов. Варьирование этих параметров позволяет получать различные ре-
ализации метода с одинаковым теоретическим порядком, но разной практической точностью.

1. Теоретическая часть

Рассмотрим начальную задачу Коши

	
0 0

( ) ( , ),
( ) ,

y x f x y
y x y
′ =

=
где функция f  является непрерывно дифференцируемой требуемое число раз.

Пусть s  — натуральное число. Пусть заданы числа ,ic  jb  и ija , где , 1,..., .i j s=  (Неявным) 
s-стадийным методом Рунге — Кутты (методом РК) называют [2, 4, 5, 6] следующее правило 
вычисления приближения 1y  к точному значению 0( )y x h+  решения y  начальной задачи в 
точке 0 :x h+

	 0 0
1

, ,
s

i i ij j
j

k f x hc y h a k
=

 
= + + 

 
∑      1,..., ,i s= 	 (1)

	 1 0
1

.
s

j j
j

y y h b k
=

= + ∑ 	 (2)

В общем случае набор равенств (1) представляет собой систему уравнений относительно 
.ik  Обычно эта система может быть решена при малых h  методом последовательных прибли-

жений, поскольку в правой части формулы (1) перед суммой jk  стоит малый множитель .h
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Если 0ija =  при ,i j≤  метод называют явным. В этом случае числа ik  можно найти из урав-
нений (1) последовательно. Если 0ija =  только при ,i j<  то метод называют диагонально неяв-
ным. В этом случае числа ik  можно снова находить последовательно, решая при этом нелиней-
ные уравнения, содержащие только одну неизвестную. Интерес возникает к неявным методам, 
когда все или почти все числа ija  могут оказаться ненулевыми. Метод Рунге — Кутты — Чебы-
шева (метод РКЧ) как раз таки является неявным методом, поскольку при составлении все или 
почти все числа ija  могут оказаться ненулевыми.

Неявные методы РК обладают важным преимуществом по сравнению с явными: их область 
устойчивости может содержать всю левую полуплоскость. Только такие методы подходят для 
решения ОДУ.

Параметры ,ic  jb  и ija  метода РК традиционно принято располагать в виде табл. 1, назы-
ваемой таблицей Бутчера.

Таблица 1
Таблица Бутчера метода РК

1c 1,1a 1,2a … 1, 1sa − 1,sa
2c 2,1a 2,2a … 2, 1sa − 2,sa

… … … … … …
sc ,1sa ,2sa … , 1s sa − ,s sa

1b 2b … 1sb − sb
Как говорилось ранее, ТБ содержит в себе всю информацию о методе Рунге — Кутты. 
Важным критерием качества метода РК является порядок аппроксимации. Говорят, что ме-

тод РК имеет порядок аппроксимации ,m  если для любых достаточно гладких дифференциаль-
ных уравнений имеет место

	 1
1 0( ) ( ) 0,my y x h O h h+− + = →ïðè

где 0( )y x h+  — значение точного решения начальной задачи, а 1y  — значение приближенного 
решения в точке 0 .x h+  Эквивалентное требование — ряды Тейлора по h  приближенного 1y  и 
точного y  решений совпадают до членов порядка .mh

Уравнения порядка аппроксимации не являются независимыми, и во многих случаях ко-
эффициенты ija  можно найти при решении линейных уравнений [2, 7]:
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∑

∑

∑ ( ( ))      D ζ

	 (3)

для некоторых η  и ,ζ  удовлетворяющих неравенствам 1m η ζ≤ + +  и 2 2m η≤ +  (*).
Уравнения (3) дают возможность получить порядок аппроксимации ,m  необходимый для 

методов РК.

2. Численный пример

Рассматривается построение ТБ для метода РКЧ 4-го порядка точности. Уже известен ал-
горитм построения метода [2, 4, 5]: нахождение коэффициентов ic  и jb  полагаются на квадра-
турную формулу Чебышева. Однако, для вычисления коэффициентов ija  нужно использовать 
формулы (3), которые при заданном порядке аппроксимации [2] 4m s= =  дают систему из 
16-ти уравнений. 
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В системе уравнений (3) ключевую роль играют η  и ζ  при условии (*). Было рассмотрено 
3 комбинации значений, при которых система (3) строилась на основе следующих условий:

	
4, 0
3, 1
2, 2

η ζ
η ζ
η ζ

= =
= =
= =

	 (4)

Первый случай ( 4,η =  0)ζ =  даёт стандартную реализацию и ранее рассматривался [5]. В 
настоящей работе рассматривается второй случай ( 3,η =  1).ζ =  При нахождении решении 
системы (3) получены следующие коэффициенты :ija

	

11 24 34 44

12 24 34 44

13 24 34 44

14 24 34 44

21 24

22

  0.236068 0.236068 0.236068 0.224058,
  0.236068 0.236068 0.236068 0.0908679,
  0.436721,
  0.406204,
  0.236068 0.178755,
  

a a a a
a a a a
a a a a
a a a a
a a
a

= − ∗ − ∗ − ∗ +
= ∗ + ∗ + ∗ −
= + + −
= − − − +
= ∗ +
= 24

23 24

31 34

32 34

33 34

41 44

42 44

43 44

0.188055 0.236068 ,
  0.530518 ,
  0.236068   0.260609,
  0.236068 0.00691855,
  0.152513 ,
  0.236068 0.233905,
  0.0124045 0.236068 ,
  0.347487

a
a a
a a
a a
a a
a a
a a
a a

− ∗
= −
= ∗ +
= − ∗ −
= −
= ∗ +
= − ∗
= −

	 (5)

Несмотря на то, что имеется 16 неизвестных и 16 уравнений, в результате вычислений (5) 
коэффициенты 24 ,a  34a  и 44a  получились свободными, то есть их можно задавать произволь-
ным образом. Это объясняется тем, что получены зависимые уравнения, и количество ТБ мо-
жет быть бесконечным. Теория говорит, что при любом подборе получится метод РК с поряд-
ком аппроксимации ,m  но с разными результатами. Для обобщенности и простоты вычислений 
свободные коэффициенты будут приравнены к нулю (табл. 2).

В системе уравнений (5) присутствует взаимозаменяемость свободных коэффициентов. Это 
даёт возможность сделать таблицу (табл. 3) при новых свободных коэффициентах 14 ,a  24a  и 34.a

Таблица 2
ТБ при 3η = , 1ζ =

0.102673 0.224058 0.0908679− 0.436721− 0.406204
0.897327 0.178755 0.188055 0.530518 0
0.406204 0.260609 0.00691855− 0.152513 0
0.593796 0.233905 0.0124045 0.347487 0

0.5 0.5 0.5 0.5
Таблица 3

ТБ при 3η = , 1ζ =  новая
0.102673 0.128167 0.00502378 0.0305175− 0
0.897327 0.178755 0.188055 0.530518 0
0.406204 0.260609 0.00691855− 0.152513 0
0.593796 0.329797 0.0834872− 0.0587171− 0.406204

0.5 0.5 0.5 0.5
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Как можно заметить, в табл. 2 по сравнению с табл. 1 изменились 1-я и 4-я строки элемен-
тов .ija  Согласно теореме [2], элемент ic  равняется сумме строки элементов ija  по 1, ,j m=  то 

есть 
1

.
s

i ij
j

c a
=

=∑
Теперь необходимо оценить погрешности вычислений. Для этого строится ОДУ вида:

	
( )  1  ( )
(0)  0.5

y x x y x
y
′ = + ∗

=
	 (6)

Известно точное решение начальной задачи (6):

	
2

2( ) 0.5 2 erf 1 ,
2

x xy x e π
    = +   

    

где 
2

0

2erf ( ) .
z tz e dt

π
−= ∫

Применяя метод РКЧ 4-го порядка точности из полученных ТБ для данного уравнения 
(отрезок [0, 2] с шагом 0.2h = ), получаются погрешности приближенных вычислений табл. 4 
(разность точного вычисления и применении РКЧ для (6) соответственно).

Наглядно, в табл. 4, показано, что ТБ, коэффициенты ija  которой расположены в канони-
ческом виде (табл. 3), имеют меньшую погрешность. Важно отметить, что при попытке обну-
лить тройку значений ija  в любых столбцах, кроме последнего, приводили к несовместности 
системы уравнений, что подчеркивает необходимость осторожного выбора параметров.

Все вычисления проводились в пакете «Математика» [3, 8].
Таблица 4

Погрешности вычислений приближенного решения уравнения
Значения в узлах 0 0.2 0.4 0.6 0.8 …
Погрешности:
Применение ТБ при 24 34 44 0a a a= = = 0 0.05025 0.14357 0.28939 0.48648 …
Применение ТБ при 14 24 34 0a a a= = = 0 0.014975 0.04172 0.08174 0.13166 …

… 1.0 1.2 1.4 1.6 1.8 2.0

… 0.68414 0.67296 0.21731 3.9358 15.91190 50.98966
… 0.16986 0.11940 0.25236 1.60218 5.72704 17.48370

*Примечание: погрешности умножены на 10 ^ (6).

Заключение

Проведённые численные эксперименты показывают, что при построении методов Рунге — 
Кутты фиксированного порядка аппроксимации система условий порядка может допускать 
свободные параметры. Это приводит к существованию множества различных таблиц Бутчера, 
каждая из которых формально соответствует заданному порядку, но обеспечивает различную 
практическую точность.

Выбор свободных коэффициентов оказывает существенное влияние на качество числен-
ного решения. Таким образом, при конструировании методов Рунге — Кутты необходимо не 
только удовлетворять условиям порядка, но и проводить дополнительный анализ с целью ми-
нимизации вычислительной погрешности. 
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УДК 517.95

ИЗУЧЕНИЕ ПОВЕДЕНИЯ РЕШЕНИЯ ЗАДАЧИ ДЛЯ УРАВНЕНИЯ
ТЕПЛОПРОВОДНОСТИ В ПОЛУПРОСТРАНСТВЕ ПРИ БОЛЬШОМ ВРЕМЕНИ

Воронежский государственный университет

А. С. Рябенко

Аннотация. При изучении задач для параболических уравнений естественным образом 
возникает вопрос о поведении их решений при большом времени. Рассматривается вто-
рая начально-краевая задача для неоднородного уравнения теплопроводности с посто-
янным коэффициентом теплопроводности в одномерном полупространстве. Для случая 
однородных начальных и граничных условий представлено решение задачи, построены 
точная равномерная оценка и точная асимптотика решения задачи по времени.
Ключевые слова: параболические уравнения, распределение тепла, стабилизация реше-
ния, поведение по времени, асимптотика по времени, уравнение теплопроводности, оцен-
ка по времени, асимптотика на бесконечности, равномерные оценки, поточечные оценки.

Введение

Одним из направлений исследования эволюционных задач является изучение поведения 
их решений при большом времени (см. [1–13]).

В работе рассматривается задача

	
2

2
2

( , ) ( , ) ( , ),u x t u x ta f x t
t x

∂ ∂
− =

∂ ∂
	 (1)

	 (0, ) ( ),u t t
x

α∂
=

∂
	 (2)

	 ( ,0) ( ),u x xψ= 	 (3)
где 0, 0, const 0.x t a> > ≡ >

Под решением задачи (1)–(3) понимается классическое решение, то есть такая функция 
( , ),u x t  которая принадлежит множеству ( ) ( )2,1 1,0

, ,(0; ) (0; ) [0; ) [0; )x t x tC C∞ × ∞ ∩ ∞ × ∞ , удовлетво-
ряет уравнению (1) и дополнительным условиям (2) и (3).

Предполагается выполнение условий.
Условие 1. Будем считать, что ( ) ( )( ) [0; ) , ( ) [0; ) .t C x Cα ψ∈ ∞ ∈ ∞
Условие 2. Будем считать, что ( )( , ) [0; ) [0; )f x t C∈ ∞ × ∞  и является финитной по совокуп-

ности переменных, то есть существует такое 0,N >  что supp ( , ) [0; ] [0; ].f x t N N⊂ ×
Условие 3. Будем считать, что ( ) ( )2,1 1,0

, ,( , ) (0; ) (0; ) [0; ) [0; ) .x t x tf x t C C∈ ∞ × ∞ ∩ ∞ × ∞

1. Сведение к обобщенному уравнению

Введем в рассмотрение функции

	 ( ) ˆ
( , ),  0,   0, ( , ),  0,  0,

ˆ( , ) ( , ),  0,  0,     , ( , ),  0,  0,
0,  ,   0, 0,  ,  0,

u x t x t f x t x t
u x t u x t x t f x t f x t x t

x t x t

> > > > 
 = − < > = − < > 
 ∈ < ∈ <  

	 ( ) ˆ
( ),  0, ( ),  0,

( )             
( ),  0, 0,

ˆ
  0,

x x t t
x t

x x t
ψ α

ψ α
ψ

> > 
= = − < < 

где ( , ), ( , ), ( ), ( )u x t f x t x tψ α  — функции из задачи (1)–(3).
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Действуя стандартным образом (см. [14]), можно доказать следующую лемму.
Лемма 1. Если у задачи (1)–(3) существует решение, то функция ˆ( , )u x t  является решением 

следующего обобщенного уравнения в пространстве 2( )D′  :

	
2

2 2
2

( , ) ( , ) ( , ) 2 ( ) ( ) ( ) ( ),
ˆ ˆ ˆ ˆ ˆu x t u x ta f x t a t x x t

t x
α δ ψ δ∂ ∂

− = − +
∂ ∂

	 (4)

где δ  — дельта-функция Дирака.

2. Построение решения обобщенного уравнения
Доказательство существования решения у задачи (1)–(3)

Так как фундаментальным решением оператора теплопроводности является функция

( )

2

24( )( , )  
2

n

x
a ttE x t e

a t

θ

π

−
=  (см. [14]), где ( )tθ  — функция Хевисайда, ,t∈  ,nx∈  то, вычислив 

свёртку ( , )E x t  с правой частью уравнения (4), можно доказать следующую лемму.
Лемма 2. Если ( ) 0xψ ≡ ,  ( ) 0tα ≡  и выполнено условие 2, то решением уравнения (4) будет 

функция

	

( )
( )

2

2 
4

0

.ˆ ( ) ˆ( , ) ( , )
2

x y
t a tt eu x t f y dyd

a t

τθ τ τ
π τ

−
−

∞

−∞

−

=
−∫ ∫

Отталкиваясь от представления функции ˆ( , )u x t  из леммы 2 можно доказать следующую 
лемму.

Лемма 3. Если ( ) 0xψ ≡ ,  ( ) 0tα ≡  и выполнены условие 2 и условие 3, то решением задачи 
(1)–(3) будет функция

	

( )
( )

( )
( )

2 2

2 2  
4 4

0 0

1( , ) ( , ) .
2

x y x y
t a t a te eu x t f y dyd

a t

τ τ

τ τ
π τ

− +
− −

∞ − −+
=

−∫∫ .

3. Изучение поведения решения задачи (1)–(3) при большом времени

Используя представление решения задачи (1)–(3) из леммы 3, можно доказать следующую 
теорему.

Теорема. Если ( ) 0xψ ≡ ,  ( ) 0tα ≡  и выполнены условие 2 и условие 3, то для решения задачи 
(1)–(3) равномерно по [0; )x∈ ∞  при t N>  выполнена оценка

	
1 
2( , )  ,u x t ct

−
≤

где c  — некоторая константа. 
Для каждого фиксированного [0; )x∈ ∞  при  t →∞  для решения задачи (1)–(3) справедлива 

асимптотическая формула

	 ( )
1 32  

2

0 0

( , ) , ,tu x t f y dyd O t
a

τ τ
π

− ∞∞
− 

= +  
 

∫∫

причем оценка 
3 
2O t

− 
 
 

 равномерна по 1[0; , ]x N∈  где 1N  — фиксированное положительное число.
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Заключение

Рассматривалась вторая начально-краевая задача для неоднородного уравнения теплопро-
водности с постоянным коэффициентом теплопроводности в одномерном полупространстве. 
Для случая однородных дополнительных условий, используя явное представление решения 
этой задачи, были построены точная равномерная оценка и точная асимптотика решения за-
дачи по времени. При построении оценок предполагалось, что правая часть уравнения финит-
на по совокупности переменных.
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ФУНКЦИЯ ГРИНА ОДНОЙ КРАЕВОЙ ЗАДАЧИ 
С НЕЛОКАЛЬНЫМ КРАЕВЫМ УСЛОВИЕМ

Воронежский государственный университет

В. Ю. Чурсин

Аннотация. Рассматривается линейное дифференциальное уравнение 1-го порядка на 
отрезке с переменным матричным коэффициентом с нелокальным краевым условием, 
содержащим функцию ограниченной вариации. Краевое условие представляет собой ли-
нейный ограниченный функционал, задающиеся интегралом Римана — Стилтьеса. По-
лучены необходимые и достаточные условия существования и единственности. Найдено 
явное представление для функции Грина, с помощью которой решение задачи представи-
мо с использованием только обычного интеграла Римана.
Ключевые слова: краевая задача, функция Грина, функциональное исчисление, функ-
ция ограниченной вариации, фундаментальная матрица, векторное дифференциальное 
уравнение.

Введение

Рассматривается дифференциальное уравнение
	 '( ) ( ) ( ) ( ), [ , ],x t A t x t h t t a b− = ∈

с краевым условием

	 ( ) ( ) ( ).
b

a
f x dg t x t= ∫

Для этой краевой задачи выписываются необходимые и достаточные условия существова-
ния и единственности решения при любом свободном члене ,h  а также выписывается явный 
вид функции Грина.

Формулировка основного результата

Обозначим через ([ , ], )nC C a b C=  линейное пространство всех непрерывных векторных 
функций :[ , ] ,nh a b C→  а через 1 1([ , ], )nC C a b C=  — линейное пространство непрерывно 
дифференцируемых функций ,x  для которых , ' .x x C∈  Эти пространства являются банаховы-
ми относительно норм

	
[ , ]

max ( ) ,
t a b

h h t
∈

=

	 { }[ , ] [ , ]
max max ( ) ,max '( ) ,

t a b t a b
x x t x t

∈ ∈
=

где в nC  используется произвольная норма. Рассмотрим дифференциальное уравнение
	 '( ) ( ) ( ) ( ), [ , ]x t A t x t h t t a b− = ∈ 	 (1)

с краевым условием
	 ( ) 0,f x = 	 (2)

где
	 ( ) ( ) ( ).

b

a
f x dg t x t= ∫

Здесь :[ , ] n nA a b C ×→  — непрерывная функция, :[ , ] nh a b C→  — непрерывная функция, 
:[ , ] n ng a b C ×→  — функция ограниченной вариации, ( ) 0.g b =  Пусть Φ  — фундаментальная 

матрица дифференциального уравнения (1), т. е. Φ  обратима и справедливо соотношение 
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	 ( ) ( ) ( ).d t A t t
dt
Φ = Φ

Введем сокращенные обозначения:

	 ( ) ( ) ( ) ,I g A d
ββ

α α
τ τ τ τ= Φ∫

	 ( ) ( ).J g a a= Φ
Доказано следующее утверждение.
Теорема 1. Пусть матрица b

aI J+  обратима. Тогда рассматриваемая краевая задача име-
ет единственное решение 1([ , ], )nx C a b C∈  при любом свободном члене ([ , ], ),nh C a b C∈  и это 
решение задается формулой 

	 ( ) ( , ) ( ) ,
b

a
x t G t s h s ds= ∫ 	 (3)

где

	
1

1
1

( ) ( ) ( ), ,
( , ) ( )( )

( ) ( ), .

s
b a
a b

s

g s I J s a s t
G t s t I J

g s I s t s b

−
−

−

 − + Φ ≤ <
= Φ − − ×

+ Φ < ≤
Условия теоремы гарантируют, что если существует матрица 1( )b

aI J −+  существует, то 
функция G  определена корректно. Назовем ее функцией Грина краевой задачи (1), (2).

Идея доказательства. Сначала находится формула для решения скалярной краевой задачи
	 '( ) ( ) ( ), [ , ],x t x t h t t a bµ− = ∈
	 ( ) 0,f x =

где
	 ( ) ( ) ( ).

b

a
f x x t dg t= ∫

Это делается путем прямых вычислений. Для удобства введем сокращенные обозначения

	 ( ) ,I g e d
ββ µτ

α α
τ µ τ= ∫

	 ( ) .aJ g a eµ=
Для скалярной краевой задачи ответ получается следующий:

	 ( ) ( , ) ( ) ,
b

a
x t G t s h s ds= ∫  

где

	 1 ( ) ( ) , ,
( , ) ( )

( ) , .

s s
t b a

a b s
s

g s I J e a s t
G t s e I J

g s I e t s b

µ
µ

µ

−
−

−

 − + ≤ <
= − − ×

+ < ≤
	 (4)

После этого в полученную формулу (4) вместо µ  и teµ  подставляются соответственно ( )A t  
и ( )tΦ  и выполняется проверка, для чего доказываются следующие леммы.

Лемма 2. Функция (3) удовлетворяет дифференциальному уравнению (1).
Лемма 3. Функция (3) удовлетворяет краевому условию (2).
В получении результата оказались полезными различные свойства функций ограниченной 

вариации и интеграла Римана — Стилтьеса. Подробнее о них можно почитать в [1–3].
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